Study of electrochemical deposition of Ni-Mo thin films from alkaline electrolytes

  • Ulviyya Magsud Gurbanova Institute of Catalysis and Inorganic Chemistry named after acad.M.Nagiyev, Azerbaijan National Academy of Sciences, AZ 1143, Baku, H. Javid 113, Azerbaijan https://orcid.org/0000-0001-6239-3207
  • Dunya Mahammad Babanly Institute of Catalysis and Inorganic Chemistry named after acad.M.Nagiyev, Azerbaijan National Academy of Sciences, AZ 1143, Baku, H. Javid 113, Azerbaija and French Azerbaijani University (UFAZ), AZ1010, Baku, Nizami 189, Azerbaijan
  • Ruhangiz Gurmuz Huseynova Institute of Catalysis and Inorganic Chemistry named after acad.M.Nagiyev, Azerbaijan National Academy of Sciences, AZ 1143, Baku, H. Javid 113, Azerbaijan
  • Dilgam Babir Tagiyev Institute of Catalysis and Inorganic Chemistry named after acad.M.Nagiyev, Azerbaijan National Academy of Sciences, AZ 1143, Baku, H. Javid 113, Azerbaijan https://orcid.org/0000-0002-8312-2980
Keywords: Ni-Mo co-deposition, electrodeposition, potentiodynamic polarization, ammonium hydroxide, platinum substrate, nickel substrate

Abstract

The process of co-deposition of Ni with Mo from alkaline electrolytes was studied by taking linear and cyclic polarization curves of Pt electrode at various concentrations of initial components and potential scan rates. Solutions of Na2MoO4∙2H2O and NiSO4∙7H2O were used as sources of ions of the main components in NH4OH electrolyte. It was found that co-deposition of nickel with molybdenum goes through the oxide formation stage, and a solid solution of these two metals is deposited on the cathode surface. The film obtained at constant current on Ni electrode under optimal conditions was found amorphous, but additional thermal treatment at 500 °C for one hour made it polycrystalline. This was confirmed by peaks in X-ray diffraction patterns, corresponding to NiMoO4, Ni, and MoO3. The proposed electrolyte and electrolysis conditions allow to obtain thin films with molybdenum content ranging from 17.1 to 50.9 at.%. The co-deposition of Ni with Mo is limited by diffusion of these ions to the cathode surface. The knowledge of the mechanism of co-deposition of Ni and Mo will make possible a selection of optimal conditions for deposition of alloys of the required composition with satisfactory electrocatalytic properties.

Downloads

Download data is not yet available.

References

B. E. Conway, L. Bai, M. A. Sattar, International Journal of Hydrogen Energy 12(9) (1987) 607-621 https://dx.doi.org/10.1016/0360-3199(87)90002-4.

J. M. Jakšić, M. V. Vojnović, N. V. Krstajić, Electrochimica Acta 45(25-26) (2000) 4151-4158 https://dx.doi.org/10.1016/S0013-4686(00)00549-1.

A. Sh. Aliyev, R. G. Guseynova, U. M. Gurbanova, D. M. Babanly, V. N. Fateev, J. V. Pushkareva, D. B.Tagiyev, Chemical Problems 16(3) (2018) 283-306 https://dx.doi.org/10.32737 / 2221-8688-2018-3-283-306.

P. Kedzierzawski, D. Oleszak, M. Janik-Czachor, Materials Science and Engineering: A 300(1-2) (2001) 105-112 https://dx.doi.org/10.1016/S0921-5093(00)01672-5.

S. D. De la Torre, D. Oleszak, A. Kakitsuji, K. Miyamoto, H. Miyamoto, S. R. Martinez, C. F. Almeraya, V. A. Martinez, J. D. Rois, Materials Science and Engineering: A 276(1-2) (2000) 226-235 https://dx.doi.org/10.1016/S0921-5093(99)00156-2.

G. L. Goswami, S. Kumar, R. Galun, B. L. Mordike, Lasers in Engineering 13(1) (2003) 35-44 https://www.researchgate.net/publication/257460030.

V. A. Majidzade, A. Sh. Aliyev, D. M. Babanly, M. Elrouby, D. B.Tagiyev, Аcta Chemica Slovenica 66(1) (2019) 155-162 https://dx.doi.org/10.17344/acsi.2018.4733.

U. M. Gurbanova, Azerbaijan Chemical Journal 4 (2019) 59-64 https://dx.doi.org/10.32737/0005-2531-2019-4-59-64.

J. Aikaitë, O. Gylienë, O. Nivinskienë, Chemija Vilnius 14(3) (2003) 135-139 http://elibrary.lt/re-sursai/LMA/Chemija/C-135.pdf.

U. M. Gurbanova, Journal of Azerbaijan National Academy of Science Nakhchivan Branch Office 2 (2019) 60-67.

E. J. Podlaha, D. Landolt, Journal of the Electrochemical Society 143(3) (1996) 885-892 https://doi.-org/10.1149/1.1836553.

C. Ma, S. C. Wang, F. C. Walsh, Transactions of the IMF 93(2) (2015) 104-112 https://dx.doi.org-/10.1179/0020296714Z.000000000218

N. Miao, J. Jiang, W. Wu, Journal of Nanomaterials (2018) 1817542. https://dx.doi.org¬/10.1155/-2018/1817542.

N. B. Panah, I. Danaee, M. Payehghadr, A. Madahi, Аcta Chemica Slovenica 65(2) (2018) 312-318 https://dx.doi.org/10.17344/acsi.2017.3953.

J. Gustavsson, C. Hummelgård, J. Bäckström, I. O. Wallinder, S. M. H. Rahman, G. Lindbergh, S. Eriksson, A. Cornell, Journal of Electrochemical Science and Engineering 2(3) (2012) 105-120 https://doi.¬org/10.5599/jese.2012.0015.

E. J. Podlaha, D. Landolt, Journal of the Electrochemical Society 143(3) (1996) 893-899. https://doi.org/10.1149/1.183655

E. Chassaing, N. Portail, A.-F. Levy, G. Wang, Journal of Applied Electrochemistry 34(11) (2004) 1085-1091 https://dx.doi.org/10.1007/s10800-004-2460-z.

M. Donten, H. Cesiulis, Z. Stojek, Electrochimica Acta 50(6) (2005) 1405-1412 https://dx.doi.org/-10.1016/j.electacta.2004.08.028.

L. S. Sanches, S. H. Domingues, A. Carubelli, L. H. Mascaro, Journal of the Brazilian Chemical Society 14(4) (2003) 556-563 https://dx.doi.org/10.1590/S0103-50532003000400011.

L. S. Sanches, S. H. Domingues, C. E. B. Marino, L. H. Mascaro, Electrochemistry Communications 6 (2004) 543-548 https://dx.doi.org/10.1016/j.elecom.2004.04.002.

V. D. Jović, B. M. Jović, G. R. Stafford, N. V. Krstajić, Z. Twardowski, in: SURFIN 2002. Chicago (2002) 76-84.

N. V. Krstajić, L. Gajić-Krstajić, U. Lačnjevac, B. M. Jović, S. Mora, V. D. Jović, International Journal of Hydrogen Energy 36(11) (2011) 6441-6449 https://dx.doi.org/10.1016/j.ijhydene.2011.02.105.

Yu. M. Polukarov, K. M. Qorbunova, Elektroosajdeniye splavov / V. Itoqi nauki. Elektrokhimiya. Elektroosajdeniye metalov i splavov 1 (1968) 259.

A. Lasia, A. Rami, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 294(1-2) (1990) 123-141 https://dx.doi.org/10.1016/0022-0728(90)87140-F.

Y. Choquette, L. Brossard, A. Lasia, H. Menard, Journal of the Electrochemical Society 137(6) (1990) 1723-1730 https://doi.org/10.1149/1.2086788.

L. O. Case, A. Kjrohn, Journal of the Electrochemical Society 105(9) (1958) 512-520 https://doi.org/-10.1149/1.2428912.

E. Chassaing, K. Vu Quang, R. Wiart, Journal of Applied Electrochemistry 19(6) (1989) 839-844 https://doi.org/10.1007/BF01007931.

D. W. Ernst, M. L. Holt, Journal of the Electrochemical Society 105(11) (1958) 686-692 https://dx.-doi.org/10.1149/1.2428691.

Y. Zeng, Z. Li, M. Ma, S. Zhou, Electrochemistry Communications 2(1) (2000) 36-38 https://dx.-doi.org/10.1016/S1388-2481 (99) 00137-X.

E. Beltowska–Lehman, P. Indyka, Thin Solid Films 520(6) (2012) 2046-2051 https://dx.doi.org-/10.1016/j.tsf.2011.10.024.

U. Lačnjevac, B. M. Jović, Z. Baščarević, V. M. Maksimović, V. D. Jović, Electrochimica Acta 54(11) (2009) 3115-3123 https://dx.doi.org/10.1016/j.electacta.2008.11.068.

S. V. Gorbachev, Zhurnal Fizichekoi Khimii 24(7) (1950) 888-896 (in Russian).

V. D. Jović, Zaštita Materijala 52(2) (2011) 95-100.

V. D. Jović, B. M. Jović, U. Lačnjevac, G. Branković, S. Bernik, A. Rečnik, Electrochimica Acta 55(13) (2010) 4188-4193 https://dx.doi.org/10.1016/j.electacta.2010.02.065.

Published
25-12-2020
Section
Electrochemical Science