A comparative study of chemical and physical properties of copper and copper alloys affected by acidic, alkaline and saline environments

  • Samiul Kaiser Directorate of Advisory, Extension and Research Services, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
  • Mohammad Salim Kaiser Directorate of Advisory, Extension and Research Services, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
Keywords: Copper-alloys, corrosion, oxidation, thermal conductivity, color, microstructure
Optical micrographs of the polished copper, brass and bronze

Abstract

Chemical and physical behavior including corrosion performance, thermal conductivity and visual color change of the copper-based alloys brass and bronze have been studied prior and after corrosion in acidic, alkaline and saline media. The concentrations of 0.5 M H2SO4, 0.5 M NaOH and 0.5 M NaCl were used in which copper and copper-alloy samples were immersed and left to corrode at room temperature for 28 days. The experiments were performed prior and after corrosion, using conventional gravimetric measurements accompanied with measurements of thermal conductivity, microstructure and optical properties. The color change of different samples was also studied through tristimulus color parameter (L*, a* and b*) values. It is concluded that the corrosion rate of copper and copper alloys is greater in acidic than in salt and alkaline media. This is due to the extent of disruption of the passive film formed on the surfaces. In the cases of alkaline and salt media, the passive films on the surface remain stable to a large extent. Small increase of thermal conductivity takes place due to formation of a very thin film of oxide and hydroxide bonded to the surface. The environment also affects the color of copper and copper alloys by chemical changes like oxidation and formation of different intermetallics on the surfaces. A microstructural study of experimental materials confirms that corrosion after 28 days results in formation of pores on the surfaces in acidic environment, and passive film that grows thicker on the surfaces in alkaline and saline environments. Aluminum oxide that is more stable than zinc oxide causes better anti-corrosion performance and minimal color variation of bronze compared to brass, especially in acidic environment.

Author Biography

Mohammad Salim Kaiser, Directorate of Advisory, Extension and Research Services, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh

Deputy Director

References

H. Chandler, Metallurgy for the Non-Metallurgist, ASM international, 4th edition, Materials Park, OH, USA, 2006.

J. A. Rogers, Powder Metallurgy 20(4) (1997) 212-220.

S. Kaiser, M. S. Kaiser, International Journal of Mechanical and Materials Engineering 13(9) (2019) 607-611.

M. Kanamori, S. Ueda, Transactions of the Japan Institute of Metals 1(2) (1960) 103-107.

J. Ridhwan, M. Syafiq, R. Hasan, Z. M. Zulfattah, Journal of Engineering and Technology 4(2) (2013) 115-124.

M. Sadayappan, D. Cousineau, R. Zavadil, M. Sahoo, H. Michels, AFS Transactions 110 (2002) 505-514.

D. Zhang, Y. Li, K. Feng, P. Zhu, G. Xu, IOP Conference Series: Materials Science and Engineering 452 (2018) Art. 022132.

M. Modlinger, M. H. G. Kuijpers, D. Braekmans, D. Berger, Journal of Archaeological Science 88 (2017) 14-23.

C. Leygraf, T. Chang, G. Herting, I. O. Wallinder, Corrosion Science 157 (2019) 337-346

S. Kaiser, M. S. Kaiser, Journal of Materials and Environmental Sciences, 11(4) (2020) 551-563.

J. L. Fang, G. McDonnell, Historical Metallurgy, 45(1) (2011) 52-61.

M. S. Kaiser, International Journal of Engineering and Information Systems, 3(11) (2019) 7-14.

E. E. Igelegbai, O. A. Alo, A. O. Adeodu, I. A. Daniyan, Journal of Minerals and Materials Characterization and Engineering, 5(1) (2017) 18-28.

S. Kaiser, M. S. Kaiser, Journal of Sustainable Structures and Materials 3(1) (2020) 1-9.

H. H. Strehblow, Mechanisms of pitting corrosions in corrosion mechanism in theory and practice, Marcel Dekker, New York, 1995.

G. V. Chester, A. Thellung, Proceedings of the Physical Society 77 (5) (1961) 1005-1013.

Y. Konishi, Y. Nakamura, Y. Fukunaka, K. Tsukada, K. Hanasaki, Electrochimica Acta 48(18) (2003) 2615-2624.

M. S. Kaiser, M. Al Nur, Journal of Electrochemical Science and Engineering 8(3) (2018) 241-253.

N. Fredj, T. D. Burleigh, Journal of the Electrochemical Society 158 (4) (2011) 104-110.

G. Bertolotti, D. Bersani, P. P. Lottici, M. Alesiani, T. Malcherek, J. Schliker, Analytical and Bioanalytical Chemistry 402 (2012) 1451-1457.

M. S. Kaiser, Journal of Chemical Technology and Metallurgy 54(2) (2019) 423-430.

D. Stanojević, D. Tošković, M. B. Rajković, Journal of Mining and Metallurgy 41 B (2005) 47-66.

O. Balogun, J. Borode, K. Alaneme, M. Bodunrin, Leonardo Electronic Journal of Practices and Technologies 24 (2014) 113-125.

S. Li, M. T. Teague, G. L. Doll, E. J. Schindelholz, H. Cong, Corrosion Science 141 (2018) 243-254.

M. E. A. Dokheily, H. M. Kredy, R. N. A. Jabery, Journal of Natural Sciences Research 4(17) (2014) 60-73.

Y. Feng, K. S. Siow, W. K. Teo, K. L. Tan, A. K. Hsieh, Corrosion, 53(5) (1997) 389-398.

R. Otsuka, M. Uda, Corrosion Science, 9(9) (1969) 703-704.

P. Russell, J. Newman, Journal of the Electrochemical Society 134(5) (1987) 1051-1058.

M. Biton, G. Salitra, D. Aurbach, P. Mishkov, and D. Ilzycer, Journal of the Electrochemical Society 153 (2006) 555-565.

X. Liao, F. Cao, L. Zheng, W. Liu, A.Chen, J. Zhang, C. Cao, Corrosion Science 53 (2011) 3289-3298.

Z. Gong, S. Peng, X. Huang, L. Gao, Materials (Basel) 11(11) (2018) Art. 2107.

I. Zaafarany, H. Boller, Current World Environment 4(2) (2009) 277-284.

H. Nady, M. M. El-Rabiei, G. M. Abd El-Hafez, Journal of Bio- and Tribo-Corrosion 3 (2017) Art. 6.

Published
12-07-2020
Section
Electrochemical Engineering