Evaluation of the electrochemical performance of Ag containing AAO layers after extended exposure to a model corrosive medium

  • Stephan V. Kozhukharov LAMAR Laboratory for Advanced Materials Research, University of Chemical Technology and Metallurgy, Sofia, Bulgaria
  • Christian Girginov Department of Physical Chemistry, University of Chemical Technology and Metallurgy, Sofia, Bulgaria
  • Denitsa Kiradzhiyska Medical University - Plovdiv, Department of Chemical Sciences, Faculty of Pharmacy, Plovdiv, Bulgaria
  • Aleksander Tsanev Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
  • Georgy Avdeev Institute of Physical Chemistry, Laboratory of X-Ray Diffraction Methods, Bulgarian Academy of Sciences, Sofia, Bulgaria
Keywords: Al-O-Ag layers, porous structures, compositions, protective abilities
microbial tubercle causing localized MIC


The coating procedure appears to be an indispensable finishing stage in the production of Al based industrial products, engineering facilities and equipment. For this reason, there is an ever-increasing interest towards the elaboration of reliable corrosion protective layers with apparent coverage, adhesion, and barrier properties. In this sense, both the for­ma­ti­on of anodized aluminum oxide (AAO) layer and its further modification with silver enable the elaboration of advanced (Al-O-Ag) films with extended beneficial charac­te­ris­tics. The present research activities are aimed at the determination of the corrosion pro­tective properties of electrochemically synthesized Al-O-Ag layers on the technically pure AA1050 alloy. The structures and compositions of the obtained Al-O-Ag layers were characterized by X-ray diffractometry (XRD) and X-ray photoelectron spectroscopy (XPS). The research activities were accomplished by means of two independent electrochemical characteri­za­tion methods: electrochemical impedance spectroscopy (EIS) and potentio­dynamic scan­ning (PDS). The electrochemical measurements were performed after 24, 168 and 672 hours of exposure to 3.5 % NaCl solution used as a model corrosive medium (MCM), in order to determine the barrier properties and durability of the elaborated Al-O-Ag layers. The analysis of the obtained results has undoubtedly shown that the proposed electro­chemical Al-O-Ag layer formation can successfully be used for the creation of self-standing layers with apparent corrosion protective properties. Besides, Al-O-Ag system can be used as a basis for development of efficient protective layers suitable for application in biologically contami­nated media.


Download data is not yet available.


M. Lamberti, F. Escher, Food Reviews International 23 (2007) 407– 433.

O. Ayalon, Y. Avnimelech, M. Shechter, Environmental Science and Policy 3 (2000) 135–144.

C. C. Huang, H. W. Ma, Science of the Total Environment 324 (2004) 161– 172.

K. Marsh, B. Bugusu, Journal of Food Science 72 (2007) R39–R55.

S. P. Joshi, R. B. Toma, N. Medora, K. O’Connor Food Chemistry 83 (2003) 383–386.

M. Šeruga, J. Grgić, M. Mandić, Zeitschrift für Lebensmittel-Untersuchung und Forschung 198 (1994) 313–316.

F. Bianchi, M. Careri, M. Maffini, A. Mangia, C. Mucchino, Rapid Communications in Mass Spectrometry 17 (2003) 251–256.

A. Becaria, A. Campbell, S. C. Bondy, Toxicology and Industrial Health 18 (2002) 309–320.

J. Kandiah, C. Kies, Biometals 7 (1994) 57–60.

W. Stępniowski, J. M. Salerno, Manufacturing Nanostructures, W. Ahmed, N. Ali (Eds. ) One Central Press, 2014, Chap. 12, p. 321.

K. Giffard, L. Arurault, C. Blanc, Microporous and Mesoporous Materials 235 (2016) 32– 41.

W. J. Stepniowski, Current Nanoscience 15(1) (2018) 3–5.

K. Giffard, L. Arurault, C. Blanc, D. Di Caprio, Surface and Interface Analysis 51(12) (2019) 1184–1193.

S. V. Kozhukharov, Ch. A. Girginov, Phenomena and Theories in Corrosion Science, Methods of Prevention, A. Gergely (Ed. ), NOVA Sci. Publ. 2019, Chap. 1, p. 3.

Ch. A. Girginov, S. V. Kozhukharov, M. J. Milanes, Bulgarian Chemical Communications 50 A (2018) 6–12.

S. V. Kozhukharov, Ch. A. Girginov, Bulgarian Chemical Communications 50-A (2018) 13–21.

M. F. de Romero, S. Urdaneta, M. Barrientos, G. Romero, CORROSION 2004 NACE International, Correlation between desulfovibrio sessile growth and OCP, hydrogen permeation, corrosion products and morphological attack on iron, Houston, Ohio, 2004. Paper No. 04576.

J. R. Davis (Ed. ), Corrosion of aluminum and aluminum alloys. ASM International, 1999, p. 152

R. Javaherdashti, Phenomena and Theories in Corrosion Science, Methods of Prevention, A. Gergely (Ed. ) NOVA Sci. Publ. 2019. Chap. 7. p. 273.

V. S. Sinyavskii, V. D. Kalinin, Protection of Metals 41 (2005) 317–328.

N. Pornnumpa, M. Jariyaboon, Engineering Journal 23(4) (2019) 171–181.

R. Rosliza, H. B. Senin, W. B. wan Nik, Asean Journal on Science and Technology for Development 25 (2008) 251–259.

P. M. Martin-Sanchez, A. A. Gorbushina, H. J. Kunte, J. Toepel, Biofouling 32 (2016) 635–644.

P. M. Martin-Sanchez, A. A. Gorbushina, J. Toepel, International Biodeterioration and Biodegradation 126 (2018) 216–223.

T. C. Dakal, A. Kumar, R. S. Majumdar, V. Yadav, Frontiers in Microbiology 7 (2016) Art. No. 1831.

A. B. Shatan, K. Venclíková, B. A. Zasońska, Pharmaceutical Research 36(10) (2019) 1–12.

A. Mogrovejo-Valdivia, O. Rahmouni, N. Tabary, M. Maton, C. Neut, B. Martel, N. Blanchemain, International Journal of Pharmaceutics 556 (2019) 301–310.

S. Mozia, P. Sienkiewicz, K. Szymański, M. Zgrzebnicki, D. Darowna, A. Czyżewski, A. W. Morawski, Journal of Chemical Technology and Biotechnology 94(8) (2019) 2497–251.

Y. Wang, Y. Wang, L. Su, Y. Luan, X. Du, X. Zhang, Journal of Alloys and Compounds 783 (2019) 136–140.

P. Sienkiewicz, D. Darowna, S. Mozia, Machines. Technologies. Materials 13(9) (2019) 388– 391.

M. Irfan, O. Polonskyi, A. Hinz, C. Mollea, F. Bosco, T. Strunskus, C. Balagna, S. Perero, F. Faupel, M. Ferraris, Cellulose 26(16) (2019) 8877–8894.

V. A. Ponomarev, I. V. Sukhorukova, A. N. Sheveyko, E. S. Permyakova, A. M. Manakhov, S. G. Ignatov, N. A. Gloushankova, I. Y. Zhitnyak, O. I. Lebedev, J. Polčak, A. M. Kozmin, D. V. Shtansky, ACS Applied Materials & Interfaces 10(29) (2018) 24406–24420.

G. Holla, R. Yeluri, A. K. Munshi, Contemporary Clinical Dentistry 3 (2012) 288–293.

L. Monyatsi, N. Mthombeni, M. Onyango, M. N. B. Momba, International Journal of Environmental Research and Public Health 9(1) (2012) 244–271.

F. S. Arakawa, Q. L. Shimabuku‐Biadola, S. de Lima Bazana, M. F. Silva, B. A. A. Filho, R. Bergamasco, The Canadian Journal of Chemical Engineering 97(9) (2019) 2408–2418.

A. Rus, V–D. Leordean, P. Berce, MATEC Web of Conferences, 137 (2017). Art. No. 07007.

T. Ivanković, J. Dikić, S. Rolland du Roscoat, S. Dekić, J. Hrenović, M. Ganjto, Water Science & Technology 80(6) (2019) 1085–1098.

M. T. Moustafa, Water Science 31(2) (2017) 164–176.

A. Kędziora, M. Speruda, E. Krzyżewska, J. Rybka, A. Łukowiak, G. Bugla-Płoskońska, International Journal of Molecular Sciences 19(2) (2018) 444–461.

C. Liao, Y. Li, S. C. Tjong, International Journal of Molecular Sciences 20(2) (2019) 449–496.

K. Hea, M. Yana, Z. Huanga, G. Zeng, A. Chen, T. Huang, M. Peng, G. Chen, Applied Clay Science 171 (2019) 38–47.

I. Shah, R. Adnan, W. Saime, W. Nga, International Journal of Chemistry 135 (2014) 1459– 1471.

V. V. Torbina, A. A. Vodyankin, S. Ten, G. V. Mamontov, M. A. Salaev, V. I. Sobolev, O. V. Vodyankina, Catalysts 8 (2018) Art. No. 447.

M. L. Zou, M. L. Du, H. Zhu, C. S. Xu, Y. Q. Fu, Journal of Physics D: Applied Physics 45 (2012) 1– 7.

J. Y. Park, K. J. Hwang, J. W. Lee, I. H. Lee, Journal of Materials Science 46 (2011) 7240–7246.

M. Padervand, H. Salari, S. Ahmadvand, M. R. Gholami, Research on Chemical Intermediates 38 (2012) 1975–1985.

R. Senthil, A. Khan, J. Pan, S. Osman, V. Yang, T. R. Kumar, Y. Sun, X. Liu, Colloids and Surfaces A 586 (2020) Art. No. 124183.

H-T. Ren, Y. Liang, X. Han, Y. Liu, S-H. Wu, H. Bai, S-Y. Jia, Applied Surface Science 504 (2020) Art. No. 144433.

U. H. Bhatti, D. Sivanesan, S. Nam, S. Y. Park, H. Baek, ACS Sustainable Chemistry & Engineering 7(12) (2019) 10234–10240.

H. Wang, B. Li, J. Mei, C. Gao, Z. Li, S. Xu, Fullerenes, Nanotubes and Carbon Nanostructures 27(5) (2019) 410 - 416.

J. Hu, H. Xu, S. Wang, W. Jia, Y. Cao, Separation and Purification Technology 226 (2019) 95–108.

W. Panpa, S. Jinawath, D. P. Kashima, Journal of Materials Research and Technology 8(6) (2019) 5180–5193.

N. K. Nasab, Z. Sabouri, S. Ghazal, M. Darroudi, Journal of Molecular Structure 1203 (2020) Art. No. 127411.

T. Liu, X. Zhang, F. Zhao, Y. Wang, Applied Catalysis B: Environmental 251 (2019) 220–228.

Y. Li, Q. Wang, H. Wang, J. Tian, H. Cui, Journal of Colloid and Interface Science 537 (2019) 206 –214.

A. Cai, Y. Sun, L. Du, X. Wang, Journal of Alloys and Compounds 644 (2015) 334–340.

M. E. Assal, M R. Shaik, M. Kuniyil, M. Khan, A. Al-Warthan, A. Ibrahim, A. Ravi, V. Mohammed, R. H. Siddiqui, S. F. Adi, Arabian Journal of Chemistry 12 (2019) 54–68.

E. Bu, Y. Chen, C. Wang, Z. Cheng, X. Luo, R. Shu, J. Zhang, M. Liao, Z. Jiang, Q. Song, Chemical Engineering Journal 370 (2019) 646–657.

Ch. Girginov, S. Kozhukharov, D. Kiradzhiyska, R. Мancheva, Electrochimica Acta 292 (2018) 614–627.

S. Kozhukharov, Ch. Girginov, A. Tsanev, M. Petrova, Journal of the Electrochemical Society 166(10) (2019) C231–C242.

Ch. Girginov, S. Kozhukharov, M. Milanes, M. Machkova, Materials Chemistry and Physics 198(1) (2017) 137–144.

S. Kozhukharov, Ch. Girginov, I. Avramova, М. Machkova, Materials Chemistry and Physics 180 (2016) 301–313.

A. M. Ferraria, A. P. Carapeto, A. M. Botelho do Rego, Vacuum 86 (2012) 1988–1991.

G. D. Sulka, Nanostructured Materials in Electrochemistry, A. Eftekhari (Ed. ), Wiley-VCH Verlag, 2008, Chap. 1, pp. 1-116.

G. E. Thompson, Y. Xu, P. Skeldon, K. Shimizu, S. H. Han, G. C. Wood, Philosophical Magazine B 55 (1987) 651–667.

G. E. Thompson, Thin Solid Films 297 (1997) 192–201.

A. Girginov, M. Bojinov, Journal of the University of Chemical Technology and Metallurgy 43 (2008) 29–36.

A. Charlesby, Proceedings of the Physical Society. Section B 66 (1953) 317–329.

L. Andreeva, S. Ikonopisov, Electrochemistry 6 (1970) 1070–1074.

D. Kiradzhiyska, R. Mantcheva, Ch. Girginov, S. Kozhukharov, Journal of Chemical Technology and Metallurgy 53(4) (2018) 745–748.

S. Wernick, R. Pinner, P. Sheasby, ASM International 5 (1987) 289–368.

G. E. Thompson, G. C. Wood, Treatise on Materials Science and Technology, J. C. Scully (Ed. ), Acad. Press, New York, 1983, p. 205.

S. Kozhukharov, V. Kozhukharov, M. Wittmar, M. Schem, M. Aslan, H. Caparrotti, M. Veith, Progress in Organic Coatings 71(2) (2011) 198–205.

B. M. Jović, V. D. Jović, Journal of the Serbian Chemical Society 69(2) (2004) 153–166.

J. Ambrose, R. G. Barradas, Electrochimica Acta 19(11) (1974) 781–786.

T. U. Hura, W. S. Chun, Journal of the Electrochemical Society 152 (2005) A179–A185.

S. S. A. El Rehim, H. H. Hassan, M. A. M. Ibrahim, M. A. Amin, Monatshefte für Chemie 129 (1998) 1103–1117.

C. Shi, O. L. G. Alderman, D. Berman, J. Du, J. Neuefeind, A. Tamalonis, J. K. Richard Weber, J. You, C. J. Benmore, Frontiers in Materials 6 (2019) Art. No. 38, 1–15.

S. P. Adiga, P. Zapol, L. A. Curtis, Physical Review B 74 (2006) Art. No. 064204, 1–8.

M. I. Talukdar, E. H. Baker, Solid State Communications 7(2) (1969) 309–310.

Electrochemical Science