Study of oxygen evolution reaction on thermally prepared xPtOy-(100-x)IrO2 electrodes

  • Ollo Kambiré UFR Sciences et Technologies, Université de Man, BP 20 Man, Côte d’Ivoire
  • Lemeyonouin A. G. Pohan UFR Sciences Biologiques, Université Peleforo Gon Coulibaly de Korhogo, BP 1328 Korhogo, Côte d’Ivoire
  • Konan H. Kondro Laboratoire de constitution et réaction de la matière, UFR SSMT, Université Félix Houphouët-Boigny de Cocody, Abidjan, 22 BP 582 Abidjan 22, Côte d’Ivoire
  • Lassiné Ouattara Laboratoire de constitution et réaction de la matière, UFR SSMT, Université Félix Houphouët-Boigny de Cocody, Abidjan, 22 BP 582 Abidjan 22, Côte d’Ivoire
Keywords: Platinum oxide, iridium dioxide, mixed Pt-Ir oxide, oxygen evolution, Tafel slope, electro-catalytic activity
Tafel lines of different xPtOy-(100-x)IrO2 electrodes

Abstract

The mixed coupled xPtOy-(100-x)IrO2 electrodes (x = 0, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100) were thermally prepared at 450 °C on titanium supports. The prepared electrodes were firstly physically characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Afterwards, electrochemical characteri­zations were performed by voltammetric (cyclic and linear) methods in different electrolyte media (KOH and HClO4). It is shown that the prepared electrodes are composed by both PtOy (platinum and platinum oxide) and IrO2 (iridium dioxide). For xPtOy-(100-x)IrO2 electrodes having higher content of IrO2, more surface cracks and pores are formed, defining a higher surface area with more active sites. Higher surface area due to presence of both PtOy and IrO2, is for xPtOy-(100-x)IrO2 electrodes in 1 M KOH solution confirmed by cyclic voltammetry at potentials of the oxide layer region. For all prepared electrodes, voltammetric charges were found higher than for PtOy, while the highest voltammetric charge is observed for the mixed 40PtOy-60IrO2 (x = 40) electrode. The Tafel slopes for oxygen evolution reaction (OER) in either basic (0.1 M KOH) or acid (0.1 M HClO4) media were determined from measured linear voltammograms corrected for the ohmic drop. The values of Tafel slopes for OER at PtOy, 90PtOy-10IrO2 and IrO2 in basic medium are 122, 55 and 40 mV dec-1, respectively. For other mixed electrodes, Tafel slopes of 40 mV dec-1 were obtained. Although proceeding by different OER mechanism, similar values of Tafel slopes were obtained in acid medium, i.e., Tafel slopes of 120, 60 and 39 mV dec-1 were obtained for PtOy, 90PtOy-10IrO2 and IrO2, and 40 mV dec-1 for other mixed electrodes. The analysis of Tafel slope values showed that OER is more rapid on coupled mixed electrodes than on pure PtOy. For mixed xPtOy-(100-x)IrO2 electrodes, OER is more rapid when the molar percent of PtOy meets the following condition: 0 ˂ x ≤ 80. This study also showed that the mixed coupled electrodes are more electro­cata­lytically active for OER than either PtOy or IrO2 in these two media. 

References

D. Gielen, F. Boshell, D. Saygin, Nature Materials 15 (2016) 117–120.

A. Bielecki, S. Ernst, W. Skrodzka, I. Wojnicki, Research 27 (2020) 11506–11530.

B. A. Olanipekun, N. O. Adelakun, International Journal of Engineering Trends Technology, 68(1) (2020) 64–67.

S. Chu, A. Majumdar, Nature 488 (2012) 294–303.

M. K. Hubbert, Science 109 (1949) 103–109.

R. E. White, R. Grossman, Science 328 (2010) 5975173. https://doi.org/10.1126/sci¬en-ce.328.5975.173-a.

T. Martin, Nature 538 (2016). https://doi.org/10.1038/538171c

J. Tollefson, Nature 521 (2015) 16-17. https://doi.org/10.1038/521016a

J. Mahmood, F. Li, S. Jung, M.S. Okyay, I. Ahmad, S. Kim, N. Park, H.Y. Jeong, J. Baek, Nature Nanotechnology 12(5) (2017) 441–446.

S. J. Gutić, A. S. Dobrota, E. Fako, N. V. Skorodumova, N. López, I. A. Pašti, Catalysts 10(3) (2020) 290.

P. J. Rheinlander, J. Herranz, J. Durst, H. A. Gasteiger, Journal of the Electrochemical Society, 161(14) (2014) F1448–F1457.

Y. Xu, B. Zhang, Chemical Society Reviews 43 (2014) 2439–2450.

H.-J. Yin, J.-H. Zhou, Y.-W. Zhang, Inorganic Chemistry Frontiers 6 (2019) 2582-2618. https://doi.org/¬10.1039/C9QI00689C

Z. Ma, Y. Zhang, S. Liu, W. Xu, L. Wu, Y.-C. Hsieh, P. Liu, Y. Zhu, K. Sasaki, J. N. Renner, K. E. Ayers, R. R. Adzic, J. X. Wang, Journal of Electroanalytical Chemistry 819(15) (2018) 296-305. https://doi.org/-10.1016/j.jelechem.2017.10.062

K. V. Sankar, R. Attias, Y. Tsur, Electrochemistry Communications 110 (2020) 106641. https://doi.org/¬10.1016/j.elecom.2019.106641

S-A Park, K.-S. Kim, Y.-T. Kim, ACS Energy Letters 3(5) (2018) 1110–1115. https://doi.org/10.1021/-acsenergylett.8b00368

D. Majumdar, Material Science Research India 15(1) (2018) 30–40.

S. Hadži-Jordanov, H. Angerstein-Kozlowska, M. Vuković, B. E. Conway, Journal of the Electrochemical Society 125 (1978) 1471–1480.

V. Birss, B. E. Conway, H. Angerstein-Kozlowska, Journal of the Electrochemical Society 131 (1984) 1502-1510.

D. Böhm, M. Beetz, M. Schuster, K. Peters, A. G. Hufnagel, M. Döblinger, B. Böller, T. Bein, D. Fattakhova-Rohlfing, Advanced Functional Materials 30 (2020) 1906670.

S. Li, C. Xi, Y.-Z. Jin, D. Wu, J.-Q. Wang, T. Liu, H.-B. Wang, C.-K. Dong, H. Liu, S. A. Kulinich, X.-W. Du, ACS Energy Letters 4(8) (2019) 1823−1829.

J. Cheng, J. Yang, S. Kitano, G. Juhasz, M. Higashi, M. Sadakiyo, K. Kato, S. Yoshioka, T. Sugiyama, M. Yamauchi, N. Nakashima, ACS Catalysis 9(8) (2019) 6974−6986.

J. Lee, B. Jeong, J. D. Ocon, Current Applied Physics 13 (2013) 309–321.

L. A. G. Pohan, L. Ouattara, La Revue Ivoirienne des Sciences et Technologie 19 (2012) 12–25.

J.-M. Hu, J.-Q. Zhang, C.-N. Cao, International Journal of Hydrogen Energy 29 (2004) 791–797.

O. Kambire, F. T. A. Appia, L. Ouattara, La Revue Ivoirienne des Sciences et Technologie 25 (2015) 21–33.

A. L. G. Pohan, L. Ouattara, K. H. Kondro, O. Kambiré, A. Trokourey, European Journal of Scientific Research 94(1) (2013) 96–108.

O. Kambire, L. A. G. Pohan, F. T. A. Appia, C. Q.-M. Gnamba, K. H. Kondro, L. Ouattara, Journal of Electrochemical Science and Engineering 5(2) (2015) 79–91.

A. L. G. Pohan, L. Ouattara, K. H. Kondro, O. Kambiré, A. Trokourey, European Journal of Scientific Research 94(1) (2013) 96–108.

B. P. Hambly, J. B. Sheppard, B. D. Pendley, E. Lindner, Electroanalysis 30 (2018) 681–689.

H. Kahlert, U. Retter, H. Lohse, K. Siegler, F. Scholz, Journal of Physical Chemistry B 102(44) (1998) 8757–8765.

A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd Edition, Wiley, 2001.

R. P. Janek, W. R. Fawcett, A. Ulman, Langmuir 14(11) (1998) 3011–3018.

O. Kambire, L. A. G. Pohan, F. T. A. Appia, C. Q.-M. Gnamba, K. H. Kondro, L. Ouattara, Journal of Electrochemical Science and Engineering 5(2) (2015) 79–91.

T. A. F. Lassali, S. C. De Castro, J. F. C. Boodts, Electrochimica Acta 43 (16-17) (1998) 2515–2525.

K. H. Kondro, L. Ouattara, A. Trokourey, Y. Bokra, Bulletin of the Chemical Society of Ethiopia 22(1) (2008) 125–134.

A. Kapałka, G. Fóti, C. Comninellis, Electrochemistry Communications 10(4) (2008) 607–610.

N. Katsuki, E. Takahashi, M. Toyoda, T. Kurosu, M. Iida, S. Wakita, Y. Nishiki, T. Shimamune, Journal of the Electrochemical Society 145(7) (1998) 2358–2362

G. H. Kelsall, Journal of Applied Electrochemistry 14(2) (1984) 177–186

O. Kambire, L. A. G. Pohan, F. T. A. Appia, L. Ouattara, International Journal of Pure and Applied Science & Technology 27(1) (2015) 27-43.

B. M. Jović, U.Č. Lačnjevac, V.D. Jović, N.V. Krstajić, Journal of Electroanalytical Chemistry 754 (2015) 100–108.

B. M. Jović, U. Č. Lačnjevac, V. D. Jović, L. Gajić-Krstajić, J. Kovač, D. Poleti, N. V. Krstajić, International Journal of Hydrogen Energy 41 (2016) 20502–20514.

S. Trasatti, in: Encyclopedia of Electrochemical Power Sources, 1st Edition, J. Garche, C. Dyer, P. Moseley, Z. Ogumi, D. Rand, B. Scrosati (Eds.), Elsevier Science, Amsterdam, Vol. 2, 2009, pp. 49–55.

Published
23-07-2020
Section
Electrochemical Science