Copper-nickel oxide nanofilm modified electrode for non-enzymatic determination of glucose

  • Mahsa Hasanzadeh Department of Analytical Chemistry, Faculty of Chemistry, University of Urmia, Urmia
  • Zahra Hasanzadeh Department of Analytical Chemistry, Faculty of Chemistry, University of Urmia, Urmia
  • Sakineh Alizadeh Faculty of Chemistry, Bu-Ali Sina University, Hamadan
  • Mehran Sayadi Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Science, Fasa
  • Mojtaba Nasiri Nezhad Department of Chemical Engineering, Urmia University of Technology, Urmia
  • Reza Emamali Sabzi Department of Analytical Chemistry, Faculty of Chemistry, University of Urmia, Urmia
  • Sajjad Ahmadi Department of Analytical Chemistry, Faculty of Chemistry, University of Urmia
Keywords: CuxO, NiO, nanofilm, Cu electrode, modifying method, non-enzymatic glucose sensor


CuxO-NiO nanocomposite film for the non-enzymatic determination of glucose was prepared by the novel modifying method. At first, anodized Cu electrode was kept in a mixture solution of CuSO4, NiSO4 and H2SO4 for 15 minutes. Then, a cathodization process with a step potential of -6 V in a mixture solution of CuSO4 and NiSO4 was initiated, generating formation of porous Cu-Ni film on the bare Cu electrode by electrodeposition assisted by the release of hydrogen bubbles acting as soft templates. Optimized conditions were determined by the experimental design software for electrodeposition process. Afterward, Cu-Ni modified electrode was scanned by cyclic voltammetry (CV) method in NaOH solution to convert Cu and Ni nanoparticles to the nano-scaled CuxO-NiO film. The electrocatalytic behavior of the novel CuxO-NiO film toward glucose oxidation was studied by CV and chronoamperometry (CHA) techniques. The calibration curve of glucose was found linear in a wide range of 0.04–5.76 mM, with a low limit of detection (LOD) of 7.3 µM (S/N = 3) and high sensitivity (1.38 mA mM-1 cm-2). The sensor showed high selectivity against some usual interfering species and high stability (loss of only 6.3 % of its performance over one month). The prepared CuxO-NiO nanofilm based sensor was successfully applied for monitoring glucose in human blood serum and urine samples.


Download data is not yet available.


X. Niu, Y. Li, J. Tang, Biosensors and Bioelectronics 51 (2014) 22-28.

S. R. Lee, Y. T. Lee, K. Sawada, Biosensors and Bioelectronics 24 (2008) 410-414.

R. Wilson, A. P. F. Turner, Biosensors and Bioelectronics 7 (1992) 165-185.

M. Willander, L. L. Yang, A. Wadeasa, Journal of Materials Chemistry 19 (2009) 1006-1018.

S. Cosnier, R. E. Ionescu, M. Holzinger, Journal of Materials Chemistry 18 (2008) 5129-5133.

S. Park, H. Boo, T. D. Chung, Analytica Chimica Acta 556(1) (2006) 46-57.

C. Li, Y. Su, S. Zhang, Biosensors and Bioelectronics 26 (2010) 903-907.

I. Kim, D. Kwon, D. Lee, T. H. Lee, J. H. Lee, G. Lee, D. S. Yoon, Biosensors and Bioelectronics 102 (2018) 617-623.

C. M. Welch, R. G. Compton, Analytical and Bioanalytical Chemistry 384(3) (2006) 601-619.

S. Park, T. D. Chung, H. C. Kim, Analytical Chemistry 75(13) (2003) 3046-3049.

J. S. Ye, Y. Wen, W. D. Zhang, Electrochemistry Communications 6(1) (2004) 66-70.

Y. Liu, H. Teng, H. Q. Hou, Biosensors and Bioelectronics 24 (2009) 3329-3334.

H. Zhu, X. Lu, M. Li, Talanta 79(5) (2009) 1446-1453.

M. Hasanzadeh, R. E. Sabzi, Current Chemistry Letters 4 (2015) 45-54.

Y. Zhang, Y. Wang, J. Jia, Sensors and Actuators B: Chemical 171–172 (2012) 580-587.

F. Cao, S. Guo, H. Y. Ma, Biosensors and Bioelectronics 26 (2011) 2756-2760.

C. C. Li, Y. L. Liu, L. M. Li, Talanta 77(1) (2008) 455-459.

L. Zhang, Y. H. Ni, H. Li, Microchimica Acta 171 (2010) 103-108.

L. Shabnam, S. N. Faisal, A. K. Roy, A. I. Minett, V. G. Gomes, Electrochimica Acta 224 (2017) 295-305.

L. Nei, Journal of Analytical Chemistry 367 (2000) 436-439.

Y. He, G. Wei, J. Lin, M. Sun, Electroanalysis 29(4) (2017) 965-974.

D. Wang, B. Huang, J. Liu, X. Guo, G. Abudukeyoumu, Y. Zhang, B. C. Ye, Y. Li, Biosensors and Bioelectronics 102 (2018) 389-395.

K. L. Wu, Y. M. Cai, B. B. Jiang, W. C. Cheong, X. W. Wei, W. Wang, N. Yu, RSC Advances 7 (2017) 21128-21135.

I. S. Ahn, T. H. Nam, S. R. Bae, Metals and Materials International 3(4) (1997) 260-264.

N. Karthik, T. N. J. I. Edison, M. G. Sethuraman, Y. R. Lee, Applied Surface Science 396 (2017) 1245-1250.

P. E. Sharel, D. Liu, R. A. Lazenby, J. Sloan, M. Vidotti, P. R. Unwin, J. V. Macpherson, The Journal of Physical Chemistry C 120(29) (2016) 16059-16068.

S. Cherevko, C. H. Chung, Talanta 80(3) (2010) 1371-1377.

S. K. Meher, G. R. Rao, Nanoscale 5 (2013) 2089-2099.

K. K. Lee, P. Y. Loh, C. H. Sow, Electrochemistry Communications 20 (2012) 128-132.

A. Salimi, A. Noorbakhash, E. Sharifi, Biosensors and Bioelectronics 24 (2008) 792-798.

Y. G. Zhou, S. Yang, Q. Y. Qian, Electrochemistry Communications 11(1) (2009) 216-219.

Z. Y. Yang, J. S. Feng, J. S. Qiao, Analytical Methods 4 (2012) 1924-1926.

F. H. Meng, W. Shi, Y. N. Sun, Biosensors and Bioelectronics 42 (2013) 141-147.

J. Zhao, L. M. Wei, C. H.Peng, Biosensors and Bioelectronics 47 (2013) 86-91.

A. Weremfo, S. T. C. Fong, A. Khan, D. B. Hibbert, C. Zhao, Electrochimica Acta 231 (2017) 20-26.

A. Rahim, Z. U. Rehman, S. Mir, N. Muhammad, F. Rehman, M. H. Nawaz, M. Yaqub, S. A. Siddiqi, A. A. Chaudhry, Journal of Molecular Liquids 248 (2017) 425-431.

T. Dayakar, R. K. Venkateswara, M. Vinodkumar, K. Bikshalu, B. Chakradhar, R. K. Ramachandra, Applied Surface Science 435 (2018) 216-224.

J. Mohapatra, B. Ananthoju, V. Nair, A. Mitra, D. Bahadur, N. V. Medhekar, M. Aslam, Applied Surface Science 442 (2018) 332-341.

L. Wang, W. Zhu, W. Lu, X. Qin, X. Xu, Biosensors and Bioelectronics 111 (2018) 41-46.

Y. Su, H. Guo, Z. Wang, Y. Long, W. Li, Y. Tu, Sensors and Actuators B: Chemical 255 (2018) 2510-2519.

S. Mohajeri, A. Dolati, K. Yazdanbakhsh, Journal of Electrochemical Science and Engineering 9(2) (2019) 207-222.

Electrochemical Science