Sol-gel synthesis and electrochemical performance of NiCo2O4 nanoparticles for supercapacitor applications

  • Yong Zhang Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002 and Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002
  • Yi Ru Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002
  • Hai-Li Gao Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002
  • Shi-Wen Wang Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002
  • Ji Yan Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002
  • Ke-Zheng Gao Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002
  • Xiao-Dong Jia Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002
  • He-Wei Luo Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002
  • Hua Fang Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002
  • Ai-Qin Zhang Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002
  • Li-Zhen Wang Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002
Keywords: Supercapacitors, sol-gel method, NiCo2O4, nanoparticles, electrochemical performances

Abstract

In this work, NiCo2O4 nanoparticles with enhanced supercapacitive performance have been successfully synthesized via a facile sol-gel method and subsequent calcination in air. The morphology and composition of as-prepared samples were characterized using scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray dif­fraction (XRD), and Raman spectroscopy (Raman). The electrochemical per­formances of NiCo2O4 nanoparticles as supercapacitor electrode materials were evalu­ated by cyclic voltammetry (CV), galvanostatic charge/discharge (GCD) tests in 3 mol L-1 KOH aqueous solution. The results show that as-prepared NiCo2O4 nanoparticles have diameters of about 20-30 nm with uniform distribution. There are some interspaces between nanoparticles observed, which could increase the effective contact area with the electrolyte and provide fast path for the insertion and extraction of electrolyte ions. The electrochemical tests show that the prepared NiCo2O4 nanoparticles for supercapacitors exhibit excellent electrochemical performance with high specific capacitance and good cycle stability. The specific capacitance of NiCo2O4 electrode has been found as high as 1080, 800, 651, and 574 F g-1 at current densities of 1, 4, 7, and 10 A g-1, respectively. Notably, the capacitance retention rate (compared with 1 A g-1) is up to 74.1 %, 60.3 %, and 53.1 % at current densities of 4, 7, and 10 A g-1, respectively. After 100 cycles, higher capacitance retention rate is also achieved. Therefore, the results indicate that NiCo2O4 material is the potential electrode material for supercapacitors.

Downloads

Download data is not yet available.

References

Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li and L. Zhang, International Journal of Hydrogen Energy 34 (2009) 4889-4899.

Y. Li, X. Han, T. Yi, Y. He and X. Li, Journal of Energy Chemistry 31 (2019) 54-78.

W. Gu and G. Yushin, Wiley Interdisciplinary Reviews: Energy and Environment 3 (2014) 424-473.

J. Sun, E. Lei, C. Ma, Z. Wu, Z. Xu, Y. Liu, W. Li and S. Liu, Electrochimica Acta 300 (2019) 225-234.

Y. Jiao, W. Hong, P. Li, L. Wang and G. Chen, Applied Catalysis B: Environmental 244 (2019) 732-739.

Y. Duan, T. Hu, L. Yang, J. Gao, S. Guo, M. Hou and X. Ye, Journal of Alloys and Compounds 771 (2019) 156-161.

Y. Zhang, Q.-q. Yao, H.-l. Gao, L.-s. Zhang, L.-z. Wang, A.-q. Zhang, Y.-h. Song and L.-x. Wang, Journal of Analytical and Applied Pyrolysis 111 (2015) 233-237.

A. Younis, D. Chu and S. Li, Journal of Materials Chemistry A 3 (2015) 13970-13977.

Y. Z. Ma, Z. X. Yu, M. M. Liu, C. Song, X. N. Huang, M. Moliere, G. S. Song and H. L. Liao, Ceramics International 45 (2019) 10722-10732.

N. Chen, A. Younis, S. Huang, D. Chu and S. Li, Journal of Alloys and Compounds 783 (2019) 772-778.

Y. Zhang, H.-l. Gao, X.-d. Jia, S.-w. Wang, J. Yan, H.-w. Luo, K.-z. Gao, H. Fang, A.-q. Zhang and L.-z. Wang, Journal of Renewable and Sustainable Energy 10 (2018) 054101-054110.

H. Zhou, X. Zhi, W. Zhang and H.-J. Zhai, Organic Electronics 69 (2019) 98-105.

Q. Zhang, B. Sun, J. Sun, N. Wang and W. Hu, Journal of Electroanalytical Chemistry 839 (2019) 39-47.

L. Liu, H. Zhang, L. Fang, Y. Mu and Y. Wang, Journal of Power Sources 327 (2016) 135-144.

X. Y. Liu, Y. Q. Zhang, X. H. Xia, S. J. Shi, Y. Lu, X. L. Wang, C. D. Gu and J. P. Tu, Journal of Power Sources 239 (2013) 157-163.

Z. Z. Zeng, L. Z. Zhu, E. S. Han, X. C. Xiao, Y. R. Yao and L. M. Sun, Ionics 25 (2019) 2791-2803.

Y. Q. Wu, X. Y. Chen, P. T. Ji and Q. Q. Zhou, Electrochimica Acta 56 (2011) 7517-7522.

Y. Zhu, X. Pu, W. Song, Z. Wu, Z. Zhou, X. He, F. Lu, M. Jing, B. Tang and X. Ji, Journal of Alloys and Compounds 617 (2014) 988-993.

S. Li, K. Yang, P. Ye, H. Jiang, Z. Zhang, Q. Huang and L. Wang, Applied Surface Science 473 (2019) 326-333.

W. Zhang, W. Xin, T. Hu, Q. Gong, T. Gao and G. Zhou, Ceramics International 45 (2019) 8406-8413.

Y. Luo, R. Guo, T. Li, F. Li, L. Meng, Z. Yang, Y. Wan and H. Luo, ChemElectroChem 6 (2019) 690-699.

H.-L. Fan, J. Zhang, W. Ju, B.-X. Liu, X.-F. Zhao, X.-C. Liu and X.-B. Yi, International Journal of Nanomanufacturing 15 (2019) 92-104.

Y. L. D. LI, R. Chen, H NI, Acta Metallurgica 54 (2018) 1179-1186.

J. Dai, R. Zhao, J. Xiang, F. Wu, L. Xin, Y. Zhang and S. Ma, Science of Advanced Materials 11 (2019) 379-385.

M. C. Liu, L. B. Kong, C. Lu, X. M. Li, Y. C. Luo and L. Kang, ASC Applied Materials & Interfaces 4 (2012) 4631-4636.

Z. Wu, Y. Zhu and X. Ji, Journal of Materials Chemistry A 2 (2014) 14759-14772.

N. Wang, B. Sun, P. Zhao, M. Yao, W. Hu and S. Komarneni, Chemical Engineering Journal 345 (2018) 31-38.

Y. Xiao, Y. Lei, B. Zheng, L. Gu, Y. Wang and D. Xiao, RSC Advances 5 (2015) 21604-21613.

S. N. Gao, F. Liao, S. Z. Ma, L. L. Zhu and M. W. Shao, Journal of Materials Chemistry A 3 (2015) 16520-16527.

H.-W. Wang, Z.-A. Hu, Y.-Q. Chang, Y.-L. Chen, H.-Y. Wu, Z.-Y. Zhang and Y.-Y. Yang, Journal of Materials Chemistry 21 (2011) 10504-10511.

L. Ma, X. Shen, Z. Ji, X. Cai, G. Zhu and K. Chen, Journal of Colloid and Interface Science 440 (2015) 211-218.

C. Wang, X. Zhang, D. Zhang, C. Yao and Y. Ma, Electrochimica Acta 63 (2012) 220-227.

S. Karmakar, S. Varma and D. Behera, Journal of Alloys and Compounds 757 (2018) 49-59.

P. Bhojane, S. Sen and P. M. Shirage, Applied Surface Science 377 (2016) 376-384.

Y. Zhu, X. Ji, Z. Wu, W. Song, H. Hou, Z. Wu, X. He, Q. Chen and C. E. Banks, Journal of Power Sources 267 (2014) 888-900.

Published
23-07-2019
Section
Electrochemical Science