Electroorganic synthesis of disulfonamide substituted p-benzoquinone by hydroquinone electrochemical oxidation

  • Seba Nassif Department of Chemistry, Faculty of Science, Al-Baath University, Homs
  • Deeb Bakeer Department of Chemistry, Faculty of Science, Al-Baath University, Homs
  • Rushdi Madwar Department of Chemistry, Faculty of Science, Al-Baath University, Homs
  • Waleed Khadam Facultyof Pharmacy, Al-Baath University, Homs
  • Abeer Nakhla Facultyof Pharmacy, Al-Baath University
Keywords: Cyclic voltammetry, electrochemical synthesis, hydroquinone, disulfonamide


This study illustrates electrochemical behavior of hydroquinone and 4-amino-6-chloro­benzene-1,3-disulfonamide in the phosphate buffer solution evaluated by cyclic voltammetry. It was found that the peak of the hydroquinone oxidation potential in the presence of 4-amino-6-chlorobenzene-1,3-disulfonamide is shifted to more positive values compared to hydroquinone alone.  Based on these results, the electrochemical synthesis of new disulfonamide substituted p-benzoquinone is proposed and carried out via electro­chemical oxidation of hydroquinone in the presence of 4-amino-6-chlorobenzene-1,3-di­sulfonamide in the electrolytic cell. It has been concluded that hydroquinone is converted into disulfonamide substituted p-benzoquinone via an ECE mechanism. The successful electrochemical synthesis was conducted in the water/ethanol mixture under green conditions without any toxic reagents or solvents and with high atom economy.


Download data is not yet available.


H. Lund and O. Hammerich, Organic Electrochemistry 4th, CRC Press, New York, (2001), p.1-95.

S. Patai, Z. Rappoport, The Chemistry of the Quinonoid Compounds. John Wiley and Sons, London, (1974) 737-791.

S. Patai, Z. Rappoport, The Chemistry of the Quinonoid Compounds Volume 2, John Wiley and Sons., London, (1988), p.1293-1349.

B. Zhang, G. Salituro, D. Li. Z. Szalkowski, Y. Zhang, I. Royo, D. Vilella, M. T. Diez, F.Pelaez, C. Ruby, R.L. Kendall, X. Mao, P. Griffin, J. Calaycay, J. R. Zierath, J. V. Heck, R. G. Smith, D. E. Moller, Science Journals 284 (1999) 974–977.

T. Murata, Y. Morita, K. Fukui, K. Sato, D. Shiomi, T. Takui, M. Maesato, H. Yamochi, G. Saito, K .A. Nakasuji, Chemie International Edition 43 (2004) 6343–6346.

F. A. Khan, S. Choudhury, Tetrahedron Letters 51 (2010) 2541–2544.

D. Nematollahi, V. Hedayatfar, Journal of Chemical Sciences 123 (2011) 709–717.

D. Nematollahi, R. Esmaili, Journal of the Iranian Chemical Society 7 (2010) 260-268.

D. Nematollahi, H. Goodarzi, Journal of Organic Chemistry 67 (2002) 5036-5039.

F. Ramirez, S. Dershowitz, Journal of the American Chemical Society 78 (1956) 5614.

A. Solhy, W. Amer, M. Karkouri, R. Tahir, A. E. Bouari, A. Fihri, M. Bousmina, M. Zahouily, Journal of Molecular Catalysis 336 (2011) 8–15.

C. T. Supuran, A. Casini, A. Scozzafava, Medicinal Research Reviews 23 (2003) 535-558.

M. Loubatieres-Mariani, Journal of Social and Biological Structures 201 (2007) 121-125.

T. H. Maren, Annual Review of Pharmacology and Toxicology 16 (1976) 309-327.

F. Comby, J. F. Lagorce, T. Moulard, J. Buxeraud, C. Raby, Veterinary Research 24 (1993) 316-326.

D. Nematollahi, R. Esmaili, Electrochimica Acta 56 (2011),3899

M. Eissen, R. Mazur, H. G. Quebbemann, K. H. Pennemann, Helvetica Chimica Acta 87 (2004) 524–535.

B. Bonev, J. Hooper, J. Parisot, J. Antimicrob. Chemotherapy 61 (2008) 1295-1301.

M. M. Cowan, Clinical Microbiology Reviews 12 (1999) 564-582.

Electrochemical Science