Graphene-modified nickel foam electrode for cathodic degradation of nitrofuranzone: Kinetics, transformation products and toxicity

  • Ya Ma College of Materials Science and Engineering, Hunan University, Changsha 410082
  • Yanhong Tang College of Materials Science and Engineering, Hunan University, Changsha 410082
  • Kai Yin State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082
  • Shenglian Luo State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082
  • Chengbin Liu State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082
  • Tian Liu State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082
  • Liming Yang State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 and Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063
Keywords: Graphene, Nickel foam, Nitrofuranzone, Electrochemical degradation


Simple, efficient, and durable electrodes are highly demanded for practical electro­chemical process. In this study, a reduced graphene oxide modified nickel foam electrode (GR‑Ni foam) was facilely prepared via one-step cyclic voltammetry electrodeposition of gra­phene oxide suspension onto the Ni foam. The electrochemical degradation of nitrofuran­zone (NFZ, a kind of typical antibiotics) was studied on the GR-Ni foam cathode. The cyclic voltammetry and electrochemical impedance spectra analysis confirmed that presence of GR loading accelerated the electron transfer from the cathode surface to NFZ. With the applied cathode potential of −1.25 V (vs. Ag/AgCl), the removal efficiency of NFZ (C0 = 20 mg L−1) at the GR-Ni foam electrode reached up to 99 % within 30 min, showing a higher reaction rate constant (0.1297 min−1) than 0.0870 min−1 at the Pd-Ni foam and 0.0186 min−1 at the Ni foam electrode. It was also found that the pH, dissolved oxygen and NFZ initial concentration have slight effect on NFZ degradation at the GR-Ni foam electrode. The reactions first occurred at nitro groups (-NO2), unsaturated C=N bonds and N-N bonds to generate furan ring-containing products, and then these products were transformed into linear diamine products. The direct reduction by electrons was mainly responsible for NFZ reduction at the GR-Ni foam electrode. Even after 18 cycles, the removal efficiency of NFZ still reached up to 98 % within 1 h. In addition, the cathodic degradation process could eliminate the antibacterial activity of NFZ. The GR-Ni foam electrode would have a great potential in electrochemical process for treating wastewater containing furan antibiotics.


Download data is not yet available.


J. Davies, D. Davies, Microbiology and Molecular Biology Reviews 74(3) (2010) 417-433.

S. Jechalke, H. Heuer, J. Siemens, W. Amelung, K. Smalla, Trends in Microbiology 22(9) (2014) 536-545.

C. Q. Gnamba, F. T. A. Appia, E. M. H. Loba, I. Sanogo, L. Ouattara, Journal of Electrochemical Science and Technology 5(2) (2015) 129-143.

C. P. Andam, G. P. Fournier, J. P. Gogarten, FEMS Microbiology Reviews 35(5) (2011) 756-767.

E. Marti, E. Variatza, J.L. Balcazar, Trends in Microbiology 22(1) (2014) 36-41.

P. Thongsrisomboon, B. Liawruangrath, S. Liawruangrath, S. Satienperakul, Food Chemistry 123(3) (2010) 834-839.

[7] A. Auro, H. Sumano, L. Ocampo, A. Barragan, The Pharmacogenomics Journal 4(1) (2004) 24-28.

N. Shrivastav, B. I. Fedeles, D. Li, J. C. Delaney, L. E. Frick, J. J. Foti, G. C. Walker, J. M. Essigmann, Plos One 9(4) (2014) e94716.

Y. Ni, P. Wang, S. Kokot, Biosensors and Bioelectronics 38(1) (2012) 245-251.

Y. Hiraku, A. Sekine, H. Nabeshi, K. Midorikawa, M. Murata, Y. Kumagai, S. Kawanishi, Cancer Letters 215(2) (2004) 141-150.

Y. Hong, X. Lin, X. Cui, L. Zhou, K. A. S. Al-Rasheid, J. Li, Ecological Indicators 54 (2015) 153-160.

Y. Hong, S. Liu, X. Lin, J. Li, Z. Yi, K. A. Al-Rasheid, Environmental Science and Pollution Research International 22(12) (2015) 9544-9553.

I. Michael, L. Rizzo, C. S. McArdell, C. M. Manaia, C. Merlin, T. Schwartz, C. Dagot, D. Fatta-Kassinos, Water Research 47(3) (2013) 957-995.

X. Tian, Y. Xu, X. Song, X. Gong, Y. Liu, Q. Zhou, Z. Wang, C. Xia, Marine Pollution Bulletin 112(1-2) (2016) 393-398.

W.-H. Yu, T.-S. Chin, H.-T. Lai, International Biodeterioration and Biodegradation 85 (2013) 517-526.

C. Ardsoongnearn, O. Boonbanlu, S. Kittijaruwattana, L. Suntornsuk, Journal of Chromatography. B 945-946 (2014) 31-38.

M. De Luca, S. Mas, G. Ioele, F. Oliverio, G. Ragno, R. Tauler, International Journal of Pharmaceutics 386(1-2) (2010) 99-107.

B. L. Edhlund, W. A. Arnold, K. McNeill, Environmental Science and Technology 40(17) (2006) 5422-5427.

B. Wang, X. L. Lv, D. Feng, L. H. Xie, J. Zhang, M. Li, Y. Xie, J. R. Li, H. C. Zhou, Journal of the American Chemical Society 138(19) (2016) 6204-6216.

W. Y. Ying, X. Z. Hu, Journal of Dispersion Science and Technology 37(5) (2015) 613-624.

Z. Z. Yuan, X. Z. Hu, Fullerenes, Nanotubes and Carbon Nanostructures 23(7) (2014) 640-648.

H. Mestankova, A. M. Parker, N. Bramaz, S. Canonica, K. Schirmer, U. von Gunten, K. G. Linden, Water Research 93 (2016) 110-120.

P. Liu, H. Zhang, Y. Feng, F. Yang, J. Zhang, Chemical Engineering Journal 240 (2014) 211-220.

D. Kong, B. Liang, H. Yun, H. Cheng, J. Ma, M. Cui, A. Wang, N. Ren, Water Research 72 (2015) 281-292.

A. Rahi, N. Sattarahmady, R. Dehdari Vais, H. Heli, Sensors and Actuators B: Chemical 210 (2015) 96-102.

C. d. L. Brito, G. H. G. Trossini, E. I. Ferreira, M. A. La-Scalea, Journal of the Brazilian Chemical Society 24(2013) 1964-1973.

W. Xie, S. Yuan, X. Mao, W. Hu, P. Liao, M. Tong, A. N. Alshawabkeh, Water Research 47(11) (2013) 3573-3582.

J. Y. Lee, J. G. Lee, S. H. Lee, M. Seo, L. Piao, J. H. Bae, S. Y. Lim, Y. J. Park, T. D. Chung, Nature Communications 4 (2013) 2766.

X. Zhao, M. Yin, L. Ma, L. Liang, C. Liu, J. Liao, T. Lu, W. Xing, Energy and Environmental Science 4(8) (2011) 2736.

P.J. Ferreira, Y. Shao-Horn, D. Morgan, R. Makharia, S. Koch, H.A. Gasteiger, Journal of the Electrochemical Society 152(11) (2005) 65-78.

L. Yang, Y. Tang, D. Yan, T. Liu, C. Liu, S. Luo, ACS Applied Materials and Interfaces 8(1) (2016) 169-176.

D. Li, Z. Mao, Y. Zhong, W. Huang, Y. Wu, P. Peng, Water Research 103 (2016) 1-9.

D. Turcio-Ortega, D. Fan, P. G. Tratnyek, E. J. Kim, Y. S. Chang, Environmental Science and Technology 46(22) (2012) 12484-92.

M. Liu, L. Yang, T. Liu, Y. Tang, S. Luo, C. Liu, Y. Zeng, Journal of Materials Chemistry A 5(18) (2017) 8608-8615.

M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li, S. Jin, Journal of the American Chemical Society 135(28) (2013) 10274-10277.

J. Heinze, Angewandte Chemie International Edition 23(11) (1984) 831-847.

C. S. Reday, S. J. Reddy, Electroanalysis 4(5) (1992) 595-599.

B. Liang, H. Y. Cheng, D. Y. Kong, S. H. Gao, F. Sun, D. Cui, F. Y. Kong, A. J. Zhou, W. Z. Liu, N. Q. Ren, W. M. Wu, A. J. Wang, D. J. Lee, Environmental Science and Technology 47(10) (2013) 5353-5361.

A. J. Wang, H. Y. Cheng, B. Liang, N. Q. Ren, D. Cui, N. Lin, B. H. Kim, K. Rabaey, Environmental Science and Technology 45(23) (2011) 10186-10193.

A. Ait Sidi Mou, A. Ouarzane, M. El Rhazi, Journal of Electrochemical Science and Engineering 7(3) (2017) 111.

R. Mao, N. Li, H. Lan, X. Zhao, H. Liu, J. Qu, M. Sun, Environmental Science and Technology 50(7) (2016) 3829-37.

H. Lan, R. Mao, Y. Tong, Y. Liu, H. Liu, X. An, R. Liu, Environmental Science and Technology 50(21) (2016) 11872-11878.

A. Li, X. Zhao, Y. Hou, H. Liu, L. Wu, J. Qu, Applied Catalysis B: Environmental 111-112 (2012) 628-635.

S. P. Mezyk, W. J. Cooper, K. P. Madden, D. M. Bartels, Environmental Science and Technology 38(11) (2004) 3161-3167.

M. Pumera, Energy and Environmental Science 4(3) (2011) 668-674.

N. Park, S. Hong, G. Kim, S. H. Jhi, Journal of the American Chemical Society 129(29) (2007) 8999-9003.

G. K. Dimitrakakis, E. Tylianakis, G. E. Froudakis, Nano Letters 8(10) (2008) 3166.

W. C. Conner, J. L. Falconer, Chemical Reviews 95(3) (1995) 759-788.

B. P. Chaplin, M. Reinhard, W. F. Schneider, C. Schuth, J. R. Shapley, T. J. Strathmann, C. J. Werth, Environmental Science and Technology 46(7) (2012) 3655-3670.

B. A. Donlon, E. Razo-Flores, G. Lettinga, J. A. Field, Biotechnology and Bioengineering 51(4) (1996) 439-449.

Electrochemical Science