Large scale model predictions on the effect of GDL thermal conductivity and porosity on PEM fuel cell performance

  • Obaid ur Rehman Chemical Engineering Department, University of Karachi, Karachi
  • Amber Fishan Zafar Automotive and Marine Engineering Department, NED University of Engineering & Technology, Karachi
Keywords: Computational fluid dynamics, Parallel computing, Experimental validation


The performance of proton exchange membrane (PEM) fuel cell majorly relies on properties of gas diffusion layer (GDL) which supports heat and mass transfer across the membrane electrode assembly. A novel approach is adopted in this work to analyze the activity of GDL during fuel cell operation on a large-scale model. The model with mesh size of 1.3 million computational cells for 50 cm2 active area was simulated by parallel computing technique via computer cluster. Grid independence study showed less than 5% deviation in criterion parameter as mesh size was increased to 1.8 million cells. Good approximation was achieved as model was validated with the experimental data for Pt loading of 1 mg cm-2. The results showed that GDL with higher thermal conductivity prevented PEM from drying and led to improved protonic conduction. GDL with higher porosity enhanced the reaction but resulted in low output voltage which demonstrated the effect of contact resistance. In addition, reduced porosity under the rib regions was significant which resulted in lower gas diffusion and heat and water accumulation.


Download data is not yet available.


M. F. B. Sunden, Transport Phenomena in Fuel Cells (Developments in Heat Transfer). WIT Press, Southampton, UK, 2005.

N. Sammes, Fuel Cell Technology Reaching Towards Commercialization. Springer, London, UK, 2006.

X. L. David P. Wilkinson, Jiujun Zhang, Rob Hui, Jeffrey Fergus, Proton Exchange Membrane Fuel Cells: Materials Properties and Performance. CRC Press, Florida, USA, 2009.

M. M. Mench, Fuel Cell Engines. John Wiley & Sons, Hoboken, USA, 2008.

U. Pasaogullari, C. Y. Wang, J. Electrochem. Soc. 151(3) (2004) A399–A406.

P. C. Rieke, N. E. Vanderborgh, J. Memb. Sci. 32(2) (1987) 313–328.

N. Parikh, J. S. Allen, R. S. Yassar, Fuel Cells 12(3) (2012) 382–390.

R. Banerjee, J. Hinebaugh, H. Liu, R. Yip, N. Ge, A. Bazylak, Int. J. Hydrogen Energ. 41(33) ( 2016) 14885–14896.

Y. Zhang, A. Verma,R. Pitchumani, Int. J. Hydrogen Energy 41(20) (2016) 8412–8426.

Y. Gao, A. Montana, F. Chen, J. Power Sources 342 (2017) 252–265.

T. E. Springer, T. A. Zawodzinski, S. Gottesfeld, J. Electrochem. Soc. 138(8) (1991) 2334–2342.

T. V NguyenR. E. White, J. Electrochem. Soc. 140(8) (1993) 2178–2186.

S. Um, C.‐Y. Wang,K. S. Chen, J. Electrochem. Soc. 147(12) (2000) 4485–4493.

H. Ju, H. Meng, C. Y. Wang, Int. J. Heat Mass Transf. 48 (2005) 1303–1315.

K. W. LumJ. J. McGuirk, J. Power Sources 143(1) (2005) 103–124.

Y. Wang and C.-Y. Wang, J. Electrochem. Soc. 153(6) (2006) A1193–A1200.

Y. M. FerngA. Su, Int. J. Hydrogen Energ. 32(17) (2007) 4466–4476.

A. A. Shah, G.-S. Kim, P. C. Sui, and D. Harvey, J. Power Sources 163(2) (2007) 793–806.

A. D. LeB. Zhou, J. Power Sources 182(1) (2008) 197–222.

Y. Wang, S. Basu, C.-Y. Wang, J. Power Sources 179(2) (2008) 603–617.

J. J. BaschukX. Li, Appl. Energy 86(2) (2009) 181–193.

Z. Zhang, X. Wang, X. Zhang, L. Jia, J. Fuel Cell Sci. Technol. 5(3) (2008) 31007–31009.

Inamuddin, T. A. Cheema, S. M. J. Zaidi, S. U. Rahman, Renew. Energ. 36(2) (2011) 529–535.

I. Khazaee, M. Ghazikhani, M. N. Esfahani, Appl. Surf. Sci. 258(6) (2012) 2141–2148.

N. Alhazmi, D. B. Ingham, M. S. Ismail, K. J. Hughes, L. Ma, M. Pourkashanian, Int. J. Hydrogen Energ. 38(1) (2013) 603–611.

D. M. Fadzillah, C. L. Nee, M. I. Rosli, Int. J. Mechan. Mechatron. Eng. 15(5) (2015) 83–89.

N. H. Maslan, M. M. Gau, M. S. Masdar, M. I. Rosli, J. Eng. Sci. Technol. 11(1) (2016) 85–95.

N. Djilali, Energy 32(4) (2007) 269–280.

C. Siegel, Energy 33(9) (2008) 1331–1352.

W. M. H. Versteeg, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Second. Pearson Education Limited, London, UK, 2007.

S. Kamarajugadda S. Mazumder, Comput. Chem. Eng. 32(7) (2008) 1650–1660.

A. Pfrang, D. Veyret, G. Tsotridis, Convection and Conduction Heat Transfer, Intech, Rijeka, Croatia, 2011, p. 215.

Y.-X. Huang, C.-H. Cheng, X.-D. Wang, J.-Y. Jang, Energy 35(12) (2010) 4786–4794.

Bioelectrochemistry & Fuel Cells