Cyclic voltammetric study of tin hexacyanoferrate for aqueous battery applications

  • Denys Gromadskyi Joint Department of Electrochemical Energy Systems, 38A Vernadsky Ave, 03680 Kyiv
  • Volodymyr Chervoniuk Joint Department of Electrochemical Energy Systems, 38A Vernadsky Ave, 03680 Kyiv
  • Sviatoslav Kirillov Joint Department of Electrochemical Energy Systems, 38A Vernadsky Ave, 03680 Kyiv
Keywords: aqueous alkali-metal-ion battery, tin hexacyanoferrate-based composite


A hybrid composite containing 65 mass % of tin hexacyanoferrate mixed with 35 mass % of carbon nanotubes has been synthesized and its electrochemical behavior as a negative electrode in alkali metal-ion batteries has been studied in 1 mol L-1 aqueous solution of sodium sulfate. The specific capacity of pure tin hexacyanoferrate is 58 mAh g-1, whereas the specific capacity normalized per total electrode mass of the composite studied reaches 34 mAh g-1. The estimated maximal specific power of an aqueous alkali-metal ion battery with a tin hexacyanoferrate electrode is ca. 3.6 kW kg-1 being comparable to characteristics of industrial electric double-layer capacitors. The maximal specific energy accumulated by this battery may reach 25.6 Wh kg-1 at least three times exceeding the specific energy for supercapacitors.


Download data is not yet available.


A. Burke, Batteries and ultracapacitors for electric, hybrid, and fuel cell vehicles, Proc. IEEE. 95(4) (2007) 806–820.

A. Burke, Ultracapacitor technologies and application in hybrid and electric vehicles, Int. J. Energy Res. 34 (2010) 133–151.

H. Kim, J. Hong, K.Y. Park, H. Kim, S.W. Kim, K. Kang, Aqueous rechargeable Li and Na ion batteries, Chem. Rev. 114(23) (2014) 11788–11827.

A.J. Stevenson, D.G. Gromadskyi, D. Hu, J. Chae, L. Guan, L. Yu L, G.Z. Chen, Supercapattery with hybrids of redox active polymers and nanostructured carbons, in: X.L. Feng (Ed.), Nanocarbons for Advanced Energy Storage, Wiley-VCH, Weinheim, Germany, 2015, pp. 179–210.

D.G. Gromadskyi, J.H. Chae, S.A. Norman, G.Z. Chen, Correlation of energy storage performance of supercapacitor with iso-propanol improved wettability of aqueous electrolyte on activated carbon electrodes of various apparent densities, Appl. Energy. 159 (2015) 39–50.

D.H. Hromadśkyi, Y.F. Fateev, N.H. Stryzhakova, Y.A. Maletin, Anodic processes on aluminum in aprotic electrolytes based on tetraethylammonium tetrafluoroborate in acetonitrile, Mater. Sci. 46(3) (2010) 412–417.

D.G. Gromadskyi, Y.F. Fateev, Y.A. Maletin, The impact of aluminum electrode anodic polarization in tetraethylammonium tetrafluoborate acetonitrile solution on the process of film formation, Corros. Sci. 69 (2013) 191–196.

P. Padigi, G. Goncher, D. Evans, R. Solanki, Potassium barium hexacyanoferrate – a potential cathode material for rechargeable calcium ion batteries, J. Power Sources. 273 (2015) 460–464.

F. Zhao, Y. Wang, X. Xu, Y. Liu, R. Song, G. Lu, Y. Li, Cobalt hexacyanoferrate nanoparticles as a high-rate and ultra-stable supercapacitor electrode material, ACS Appl. Mater. Interfaces. 6(14) (2014) 11007–11012.

C.D. Wessells, R.A. Huggins, Y. Cui, Copper hexacyanoferrate battery electrodes with long cycle life and high power, Nat. Commun. 2(550) (2011) 1–5.

Y. You, X. Yu, Y. Yin, K.W. Nam, Y.G. Guo, Sodium iron hexacyanoferrate with high Na content as Na-rich cathode material for Na-ion batteries, Nano Res. 8(1) (2015) 117–128.

L. Wang, Y. Lu, J. Liu, M. Xu, J. Cheng, D. Zhang, J.B. Goodenough, A superior low-cost cathode for a Na-ion battery, Angew. Chem. Int. Ed. 52 (2013) 1964–1967.

C.D. Wessells, S.V. Peddada, R.A. Huggins, Y. Cui, Nickel hexacyanoferrate nanoparticle electrode for aqueous sodium and potassium ion batteries, Nano Lett. 11 (2011) 5121–5425.

M. Xie, Y. Huang, M. Xu, R. Chen, X. Zhang, L. Li, Sodium titanium hexacyanoferrate as an environmentally friendly and low-cost cathode material for sodium-ion batteries, J. Power Sources. 302 (2016) 7–12.

H. Lee, Y.I. Kim, J.K. Park, J.W. Choi, Sodium zinc hexacyanoferrate with a well-defined open framework as a positive electrode for sodium ion batteries, Chem. Commun. 48 (2012) 8416–8418.

C. Ling, J. Chen, F. Mizuno, First principles of alkali and alkaline earth ion intercalations in iron hexacyanoferrate: the important role of ionic radius, J. Phys. Chem. C. 117 (2013) 21158–21165.

J. Yun, J. Pfisterer, A.S. Bandarenka, How simple are the models of Na-intercalation in aqueous media? Energy Environ. Sci. 9 (2016) 955–961.

MSDS database, URL: (viewed on 10.02.2016).

Sigma Aldrich catalog, URL: (viewed on 10.02.2016).

H. Razmi, A. Taghvimi, Tin hexacyanoferrate nanoparticles based electrochemical sensor for selective and high sensitive determination of H2O2 in acidic media, Int. J. Electrochem. Sci. 5 (2010) 751–762.

M.S.P. Shaffer, X. Fan, A.H. Windle, Dispersion and packing of carbon nanotubes, Carbon. 36(11) (1998) 1603–1612.

D.G. Gromadskyi, Characterization of Ag/Ag2SO4 system as reference electrode for in-situ electrochemical studies of advanced aqueous supercapacitors, J. Chem. Sci. (2016) DOI: 10.1007/s12039-016-1084-2

S. Zhang, N. Pan, Supercapacitors performance evaluation, Adv. Energy Mater. 1401404 (2014) 1–19.

J. Chen, K. Huang, S. Liu, Insoluble metal hexacyanoferrates as supercapacitor electrodes, Electrochem. Commun. 10 (2008) 1851–1855.

Y. Yang, Y. Hao, J. Yuan, L. Niu, F. Xia, In-situ co-deposition of nickel hexacyanoferrate nanocubes on reduced graphene oxides for supercapacitors, Carbon. 84 (2015) 174–184.

Y. Yang, H. Hao, X. Wang, Q. Yan, J. Yuan, Y. Shao, L. Niu, S. Huang, Controllable synthesis of coaxial nickel hexacyanoferrate/carbon nanotube nanocables as advanced supercapacitor materials, Electrochim. Acta. 167 (2015) 364–371.

A. Laheäär, P. Przygocki, Q. Abbas, F. Béguin, Appropriate methods for evaluating the efficiency and capacitive behavior of different types of supercapacitors, Electrochem. Commun. 60 (2015) 21–25.

E. Laviron, Surface linear potential sweep voltammetry: equation of the peaks for a reversible reaction when interactions between the adsorbed molecules are taken into account, J. Electroanal. Chem. Interfacial Electrochem. 52 (1974) 395–402.

P. Zanello, Inorganic electrochemistry: theory, practice and application, Royal Society of Chemistry, Cambridge, UK, 2003, p. 615.

C.K. Park, S.B. Park, S.H. Oh, H. Jang, W. Cho, Li Ion Diffusivity and improved electrochemical performances of the carbon coated LiFePO4, Bull. Korean Chem. Soc. 32 (2011) 836–840.

H. Hia, L. Lu, G. Ceder, Li diffusion in LiCoO2 thin films prepared by pulsed laser deposition, J. Power Sources. 159 (2006) 1422–1427.

S.B. Tang, M.O. Lai, L. Lu, Study on Li+-ion diffusion in nano-crystalline LiMn2O4 thin film cathode grown by pulsed laser deposition using CV, EIS and PITT techniques, Mater. Chem. Phys. 111(1) (2008) 149–153.

Y. Maletin, V. Strelko, N. Stryzhakova, S. Zelinsky, A.B. Rozhenko, D. Gromadsky, V. Volkov, S. Tychina, G. Gozhenko, D. Drobny, Carbon based electrochemical double layer capacitors of low internal resistance, Energy Environ. Res. 3 (2013) 156–165.

Z.G. Dai, C. Peng, J.H. Chae, G.Z. Chen, Cell voltage versus electrode potential range in aqueous supercapacitors, Sci. Rep. 5(9854) (2015) 1–8.

W.G. Pell, B.E. Conway, Quantitative modeling of factors determining Ragone plots for batteries, J. Power Sources. 63 (1996) 255–266.

X. Wu, Y. Cao, X. Ai, J. Qian, H. Yang, A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3–Na2NiFe(CN)6 intercalation chemistry, Electrochem. Commun. 31 (2013) 145–148.

C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Zhang, Graphene-based supercapacitor with an ultrahigh energy density, Nano Lett. 10 (2010) 4863–4868.

A. Du Pasquier, J.A. Shelburne, I. Plitz, F. Badway, A.S. Gozdz, G.G. Amatucci, Advances in the Telcordia flat supercapacitor technology, in: Proc. 11th Int. Semin. Double Layer Capacitors and Similar Energy Storage Devices, Deerfield Beach, USA. 2001, pp. 1–10.

Z. Gao, G. Wang, P. Li. Z. Zhao, Electrochemical and spectroscopic studies of cobalt hexacyanoferrate film modified electrodes, Electrochim. Acta. 36(1) (1991) 147–152.

C.H. Luangdilok, D.J. Arent, A.B. Bocarsly, R. Wood, Investigation of the structure-reactivity relationship in the PtMxCdFe(CN)6 modified electrode system, Langmuir. 8(2) (1992) 650–657.

L.M. Siperko, T. Kuwana, Electrochemical and spectroscopic studies of metal hexacyanometalate films – III. Equilibrium and kinetics studies cupric hexacyanoferrate, Electrochim. Acta. 32(5) (1987) 765–711.

K. Itaya, K. Ataka, S. Toshima, Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes, J. Am. Chem. Soc. 104(18) (1982) 4767–4772.

S. Dong, Z. Jin, Electrochemistry of indium hexacyanoferrate film modified electrodes. Electrochim Acta. 34(7) (1989) 963–968.

P. Wang, Z. Jing, W. Zhang, G. Zhu, Renewable manganous hexacyanoferrate-modified graphite organosilicate composite electrode and its electrocatalytic oxidation of L-cysteine, J. Solid State Electrochem. 5(6) (2001) 369–374.

S. Dong, Z. Jin, Molybdenum hexacyanoferrate film modified electrodes, J. Electroanal. Chem. 256(1) (1988) 193–198.

M.H. Pournaghi-Azar, H. Razmi-Nerbin, Voltammetric behaviour and electrocatalytic activity of the aluminum electrode modified with nickel and nickel hexacyanoferrate films, prepared by electrode deposition, J. Electroanal. Chem. 456(1–2) (1998) 83–90.

M. Jiang, X. Zhou, Z. Zhao, Preparation and characterization of mixed-valent titanium hexacyanoferrate film modified glassy carbon electrode, J. Electroanal. Chem. 292(1–2) (1990) 289–296.

S. Dong, F. Li, Researches on chemically modified electrodes: Part XV. Preparation and electrochromism of the vanadium hexacyanoferrate film modified electrodes, J. Electroanal. Chem. 210(1) (1986) 31–44.

J. Joseph, H. Gomathi, G.P. Rao, Modification of carbon electrodes with zinc hexacyanoferrate, J. Electroanal. Chem. 431(2) (1997) 231–235.

A. Safavi, S.H. Kazemi, H. Kazami, Electrochemically deposited hybrid nickel – cobalt hexacyanoferrate nanostructures for electrochemical supercapacitors, Electrochim. Acta. 56 (2011) 9191–9196.

Electrochemical Engineering