Supercapacitor performance gains from structural modification of carbon electrodes using gamma radiations

Original scientific paper

  • Norliyana Mustapar Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia https://orcid.org/0000-0002-7351-7305
  • Mohd Amir Radhi Othman Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia https://orcid.org/0000-0001-5062-8507
  • Mohd Sukor Su'ait Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia https://orcid.org/0000-0001-9257-0657
  • Mohd Suleman Shibli National College, Veer Bahadur Singh Purvanchal University, Uttar Pradesh 222003, India https://orcid.org/0000-0002-3303-6267
  • Wai Yin Wong Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor,Malaysia https://orcid.org/0000-0002-5093-1431
  • Kee Shyuan Loh Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor,Malaysia
Keywords: Supercapacitor cell, activated carbon, gamma pretreatment, secondary electrons radiation
Graphical Abstract

Abstract

The performance of supercapacitors (SC) strongly depends on how their activated carbon (AC) electrodes were synthesized from precursor materials and pretreatments applied to them. This study investigates the effect of direct and filtered gamma radiations applied as pretreatments to the AC. The exposure doses used were from 0.1 kGy to 6 kGy. The high gamma-energy and high dose of the pretreatment broke the randomly orientated graphitic crystal lattices inside AC particles and disturbed the existing functional group populations. The filtered radiation pretreatment at 1 kGy, which contains a higher composition of secondary electrons than direct radiation pretreatment, yields AC with the best overall SC performance. The SC cell made from 1 kGy filtered radiation pretreatment AC showed higher specific capacitance 73.1 % (218.58 F g-1), specific energy 73.54 % (10.96 W h kg-1) and specific power of 8.36 % (155.67 W kg-1) compared to the sample without any radiation pretreatment. This study explicitly shows the benefit of secondary electrons in the radiation field, which produce decisively defect sites on the AC lattices for gains in SC performance.

Downloads

Download data is not yet available.

References

P. A. Owusu, S. Asumadu-Sarkodie, Cogent Engineering 3 (2016) 1167990.

https://doi.org/10.1080/23311916.2016.1167990

H. Wang, Z. Xu, A. Kohandehghan, Z. Li, K. Cui, X. Tan, T. J. Stephenson, C. K. King’ondu, C. M. B. Holt, B. C. Olsen, J. K. Tak, D. Harfield, A. O. Anyia, D. Mitlin, ACS Nano 7 (2013) 5131–5141. https://doi.org/10.1021/nn400731g

B. Zhao, D. Chen, X. Xiong, B. Song, R. Hu, Q. Zhang, B. H. Rainwater, G. H. Waller, D. Zhen, Y. Ding, Y. Chen, C. Qu, D. Dang, C.-P. Wong, M. Liu, Energy Storage Materials 7 (2017) 32–39. https://doi.org/10.1016/j.ensm.2016.11.010

B. K. Kim, S. Sy, A. Yu, J. Zhang, Handbook of Clean Energy Systems, John Wiley & Sons Ltd, Chichester, UK, 2015, p. 1–25. https://doi.org/10.1002/9781118991978.hces112

A. Burke, H. Zhao, 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall), Boston, USA, 2015. p. 1–5. https://doi.org/10.1109/VTCFall.2015.7391093

G. Xiong, P. He, Z. Lyu, T. Chen, B. Huang, L. Chen, T. S. Fisher, Nature Communications 9 (2018) 790. https://doi.org/10.1038/s41467-018-03112-3

K. Jung, W. Deng, D. W. Smith, J. P. Ferraris, Electrochemistry Communications 23 (2012) 149–152. https://doi.org/10.1016/j.elecom.2012.07.026

C. Li, X. Yang, G. Zhang, Materials Letters 161 (2015) 538–541. https://doi.org/10.1016/j.matlet.2015.09.003

H.-J. Choi, S.-M. Jung, J.-M. Seo, D. W. Chang, L. Dai, J.-B. Baek, Nano Energy 1 (2012) 534–551. https://doi.org/10.1016/j.nanoen.2012.05.001

H. Shen, E. Liu, X. Xiang, Z. Huang, Y. Tian, Y. Wu, Z. Wu, H. Xie, Materials Research Bulletin 47 (2012) 662–666. https://doi.org/10.1016/j.materresbull.2011.12.028

G. A. Snook, P. Kao, A. S. Best, Journal of Power Sources 196 (2011) 1–12. https://doi.org/10.1016/j.jpowsour.2010.06.084

H. Xiao, S. Yao, H. Liu, F. Qu, X. Zhang, X. Wu, Progress in Natural Science: Materials International 26 (2016) 271–275. https://doi.org/10.1016/j.pnsc.2016.05.007

V. Subramanian, S. C. Hall, P. H. Smith, B. Rambabu, Solid State Ionics 175 (2004) 511–515. https://doi.org/10.1016/j.ssi.2004.01.070

D.-Q. Liu, S.-H. Yu, S.-W. Son, S.-K. Joo, ECS Transactions 16 (2008) 103–109. https://doi.org/10.1149/1.2985632

K. Liu, Y. Zhang, W. Zhang, H. Zheng, G. Su, Transactions of Nonferrous Metals Society of China 17 (2007) 649–653. https://doi.org/10.1016/S1003-6326(07)60150-2

C. Peng, X. Yan, R. Wang, J. Lang, Y. Ou, Q. Xue, Electrochimica Acta 87 (2013) 401–408. https://doi.org/10.1016/j.electacta.2012.09.082

J. Mi, X.-R. Wang, R.-J. Fan, W.-H. Qu, W.-C. Li, Energy & Fuels 26 (2012) 5321–5329. https://doi.org/10.1021/ef3009234

R. Farma, M. Deraman, I. A. Talib, Awitdrus, R. Omar, M. M. Ishak, E. Taer, N. H. Basri, B. N. M. Dolah, 5th Asian Physics Symposium (APS 2012), Bandung, Indonesia, 2012, p. 030006. https://doi.org/10.1063/1.4917095

A. E. Ismanto, S. Wang, F. E. Soetaredjo, S. Ismadji, Bioresource Technology 101 (2010) 3534–3540. https://doi.org/10.1016/j.biortech.2009.12.123

V. Subramanian, C. Luo, A. M. Stephan, K. S. Nahm, S. Thomas, B. Wei, The Journal of Physical Chemistry C 111 (2007) 7527–7531. https://doi.org/10.1021/jp067009t

D. Prahas, Y. Kartika, N. Indraswati, S. Ismadji, Chemical Engineering Journal 140 (2008) 32–42. https://doi.org/10.1016/j.cej.2007.08.032

X. Li, W. Xing, S. Zhuo, J. Zhou, F. Li, S.-Z. Qiao, G.-Q. Lu, Bioresource Technology 102 (2011) 1118–1123. https://doi.org/10.1016/j.biortech.2010.08.110

J. Li, Q. Wu, New Journal of Chemistry 39 (2015) 3859–3864. https://doi.org/10.1039/C4NJ01853B

K. Charoensook, C.-L. Huang, H.-C. Tai, V. V. K. Lanjapalli, L.-M. Chiang, S. Hosseini, Y.-T. Lin, Y.-Y. Li, Journal of the Taiwan Institute of Chemical Engineers 120 (2021) 246–256. https://doi.org/10.1016/j.jtice.2021.02.021

E. Taer, P. Dewi, Sugianto, R. Syech, R. Taslim, Salomo, Y. Susanti, A. Purnama, Apriwandi, Agustino, R. N. Setiadi, The 1st International Conference And Exhibition On Powder Technology Indonesia (ICePTi) 2017, Jatinangor, Indonesia, 2017, p. 030026. https://doi.org/10.1063/1.5021219

T. E. Rufford, D. Hulicova-Jurcakova, Z. Zhu, G. Q. Lu, Electrochemistry Communications 10 (2008) 1594–1597. https://doi.org/10.1016/j.elecom.2008.08.022

J. Chen, Y. Zhai, H. Chen, C. Li, G. Zeng, D. Pang, P. Lu, Applied Surface Science 263 (2012) 247–253. https://doi.org/10.1016/j.apsusc.2012.09.038

J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simonand, P. L. Taberna, Science 313 (2006) 1760–1763. https://doi.org/10.1126/science.1132195

H. P. S. A. Khalil, H. Ismail, H. D. Rozman, M. N. Ahmad, European Polymer Journal 37 (2001) 1037–1045. https://doi.org/10.1016/S0014-3057(00)00199-3

C. Su, M. Tripathi, Q.-B. Yan, Z. Wang, Z. Zhang, C. Hofer, H. Wang, L. Basile, G. Su, M. Dong, J. C. Meyer, J. Kotakoski, J. Kong, J.-C. Idrobo, T. Susi, J. Li, Science Advances 5 (2019) eaav2252. https://doi.org/10.1126/sciadv.aav2252

D. Sekulićc, B. Babić, L. Kljajević, J. Stašicć B. Kaluđerović, Journal of the Serbian Chemical Society 74 (2009) 1125–1132. https://doi.org/10.2298/JSC0910125S

N. S. Mohd Nor, M. Deraman, R. Omar, Awitdrus, R. Farma, N. H. Basri, B. N. Mohd Dolah, N. F. Mamat, B. Yatim, M. N. Md Daud, Energy 79 (2015) 183–194. https://doi.org/10.1016/j.energy.2014.11.002

B. Li, Y. Feng, K. Ding, G. Qian, X. Zhang, J. Zhang, Carbon 60 (2013) 186–192. https://doi.org/10.1016/j.carbon.2013.04.012

V. A. Kislenko, S. V. Pavlov, S. A. Kislenko, Electrochimica Acta 341 (2020) 136011. https://doi.org/10.1016/j.electacta.2020.136011

C. N. Barnakov, G. P. Khokhlova, A. N. Popova, S. A. Sozinov, Z. R. Ismagilov, Eurasian Chemico-Technological Journal 17 (2015) 87. https://doi.org/10.18321/ectj198

T. K. Enock, C. K. King’ondu, A. Pogrebnoi, Y. A. C. Jande, Materials Today Energy 5 (2017) 126–137. https://doi.org/10.1016/j.mtener.2017.06.006

M. Beidaghi, W. Chen, C. Wang, Journal of Power Sources 196 (2011) 2403–2409. https://doi.org/10.1016/j.jpowsour.2010.09.050

S. R. S. Prabaharan, R. Vimala, Z. Zainal, Journal of Power Sources 161 (2006) 730–736. https://doi.org/10.1016/j.jpowsour.2006.03.074

X. Geng, L. Li, M. Zhang, B. An, X. Zhu, Journal of Environmental Sciences 25 (2013) S110–S117. https://doi.org/10.1016/S1001-0742(14)60638-0

T. K. Manimekalai, G. Tamilarasan, N. Sivakumar, S. Periyasamy, International Journal of ChemTech Research 8 (2015) 225–240.

H. P. S. A. Khalil, M. Jawaid, P. Firoozian, U. Rashid, A. Islam, H. M. Akil, Journal of Biobased Materials and Bioenergy 7 (2013) 708–714. https://doi.org/10.1166/jbmb.2013.1379

S. J. Gregg, K. S. W. Sing, Adsorption, Surface Area and Porosity, Academic Press, London, 1982. https://doi.org/10.1002/bbpc.19820861019

P. González-García, T. A. Centeno, E. Urones-Garrote, D. Ávila-Brande, L. C. Otero-Díaz, Applied Surface Science 265 (2013) 731–737. https://doi.org/10.1016/j.apsusc.2012.11.092

D. Ma, G. Wu, J. Wan, F. Ma, W. Geng, S. Song, RSC Advances 5 (2015) 107785–107792. https://doi.org/10.1039/C5RA24401C

A. Sarkar, K. Dasgupta, P. Barat, P. Mukherjee, D. Sathiyamoorthy, International Journal of Modern Physics B 22 (2008) 865-875. https://doi.org/10.1142/S0217979208038119

T. Brousse, M. Toupin, R. Dugas, L. Athouël, O. Crosnier, D. Bélanger, Journal of The Electrochemical Society 153 (2006) A2171. https://doi.org/10.1149/1.2352197

B. Manoj, A. G. Kunjomana, International Conference on Materials Science and Technology (ICMST 2012), Kerala, India, 2012, 012096. https://doi.org/10.1088/1757-899X/73/1/012096

R. Hendriansyah, T. Prakoso, P. Widiatmoko, I. Nurdin, H. Devianto, MATEC Web of Conferences 156 (2018) 03018. https://doi.org/10.1051/matecconf/201815603018

D. Qu, Journal of Power Sources 109 (2002) 403–411. https://doi.org/10.1016/S0378-7753(02)00108-8

J.-S. Roh, Carbon Letters 9 (2008) 127–130. https://doi.org/10.5714/CL.2008.9.2.127

B. Senthilkumar, Z. Khan, S. Park, K. Kim, H. Ko, Y. Kim, Journal of Materials Chemistry A 3 (2015) 21553–21561. https://doi.org/10.1039/C5TA04737D

M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cançado, A. Jorio, R. Saito, Physical Chemistry Chemical Physics 9 (2007) 1276–1290. https://doi.org/10.1039/B613962K

V. T. Nguyen, H. D. Le, V. C. Nguyen, T. T. T. Ngo, D. Q. Le, X. N. Nguyen, N. M. Phan, Advances in Natural Sciences: Nanoscience and Nanotechnology 4 (2013) 035012. https://doi.org/10.1088/2043-6262/4/3/035012

J. Shi, D. Xing, J. Lia, Energy Procedia 16 (2012) 758–762. https://doi.org/10.1016/j.egypro.2012.01.122

J. H. Hubel, S. M. Seltzer, 23 (1995) 203. https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nistir5632.pdf

A.-N. A. El-Hendawy, Journal of Analytical and Applied Pyrolysis 75 (2006) 159–166. https://doi.org/10.1016/j.jaap.2005.05.004

A. J. R. Rennie, V. L. Martins, R. M. Smith, P. J. Hall, Scientific Reports 6 (2016) 22062. https://doi.org/10.1038/srep22062

F. Yang, X. Liu, R. Mi, L. Yuan, X. Yang, M. Zhong, Z. Fu, C. Wang, Y. Tang, Nanomaterials 8 (2018) 533. https://doi.org/10.3390/nano8070533

S. Qu, J. Wan, C. Dai, T. Jin, F. Ma, Journal of Alloys and Compounds 751 (2018) 107–116. https://doi.org/10.1016/j.jallcom.2018.04.123

Published
10-03-2022
Section
Electrochemical Science