Influence of supporting electrolyte on electrochemical formation of copper nanoparticles and their electrocatalytic properties

  • Noelia Zurita Instituto de Ingeniería Electroquímica y Corrosión (INIEC), Departamento de Ingeniería Química, Universidad Nacional del Sur, Av. Alem 1253, (8000) Bahía Blanca, Argentina
  • Silvana García Instituto de Ingeniería Electroquímica y Corrosión (INIEC), Departamento de Ingeniería Química, Universidad Nacional del Sur, Av. Alem 1253, (8000) Bahía Blanca, Argentina
Keywords: Copper nanocrystals, electrodeposition, plating solution, highly oriented pyrolytic graphite (HOPG), nitrate reduction
Graphical Abstract


Comparative analysis of copper nanoparticles (CuNPs) obtained by electrodeposition on highly oriented pyrolytic graphite (HOPG) substrates from different supporting electrolytes containing sulphate anions, was performed. Voltammetric results indicated that Cu electrodeposition follows a diffusion-controlled nucleation and crystal growth model for three solutions studied (Na2SO4, H2SO4 and Na2SO4+H2SO4). Na2SO4 solution was found to be most effective because the copper reduction occurs at most positive potential value, reaching the highest current density. Analysis of potentiostatic current transients revealed that the process can be described predominantly by a model involving 3D-progressive nucleation mechanism, which was corroborated by scanning electron microscopy (SEM) analysis. SEM images showed high density of hemispherical shaped Cu particles of different sizes (mostly between 80-150 nm), randomly distributed on the HOPG surface for Na2SO4 electrolyte solution. In the presence of H2SO4, the size dispersion decreased, resulting in particles with greater diameters (up to 339 nm). The use of electrolyte solution with Na2SO4+H2SO4 revealed lower particle density with a considerable crystal size dispersion, where very small crystallites are prevailing. Cyclic voltammetry was used to evaluate qualitatively the catalytic activity of CuNPs deposited from three electrolyte solutions towards the nitrate reduction reaction. An enhanced catalytic effect was obtained when copper particles were prepared from either Na2SO4 or H2SO4 supporting electrolytes.


Download data is not yet available.


S. Magdassi, M. Grouchko, A. Kamyshny, Materials (Basel) 3(9) (2010) 4626-4638.

Z. Qing, A. Bai, S. Xing, Z. Zou, X. He, K. Wang, R. Yang, Biosensors and Bioelectronics 137 (2019) 96-109.

Y. Zhang, N. Li, Y. Xiang, D. Wang, P. Zhang, Y. Wang, S. Lu, R. Xu, J. Zhao, Carbon 156 (2020) 506-513.

D.-D. Wang, C.-W. Ge, G.-A. Wu, Z.-P. Li, J.-Z. Wang, T.-F. Zhang, Y.-Q. Yu, L.-B. Luo, Journal of Materials Chemistry C 5 (2017) 1328-1335.

M. del C. Aguirre, S.E. Urreta, C.G. Gomez, Sensors and Actuators B: Chemical 284 (2019) 675-683.

S.B. Khan, F. Ali, K. Akhtar, Carbohydrate Polymers 207 (2019) 650-662.

R. Suresh Babu, P. Prabhu, S. Sriman Narayanan, Materials Today: Proceedings 36(4) (2019) 867-872.

E.M. Bakhsh, F. Ali, S.B. Khan, H.M. Marwani, E.Y. Danish, A.M. Asiri, International Journal of Biological Macromolecules 131 (2019) 666-675.

World Health Organization, Guidelines for Drinking-water Quality, 3rd Edition, 2004.

C. Sun, F. Li, H. An, Z. Li, A.M. Bond, J. Zhang, Electrochimica Acta 269 (2018) 733-741.

A. M. Stortini, L. M. Moretto, A. Mardegan, M. Ongaro, P. Ugo, Sensors and Actuators B 207 Part A (2015) 186-192.

M.R. Majidi, K. Asadpour-Zeynali, B. Hafezi, International Journal of Electrochemical Science 6 (2011) 162-170.

D. Reyter, M. Odziemkowski, D. Bélanger, L. Roué, Journal of the Electrochemical Society 154(8) (2007) K36.

Y. Li, J.Z. Sun, C. Bian, J.H. Tong, H.P. Dong, H. Zhang, S.H. Xia, AIP Advances 5(4) (2015) 041312.

Y.-J. Shih, Z.-L. Wu, C.-Y. Lin, Y.-H. Huang, C.-P. Huang, Applied Catalysis B: Environmental 273 (2020) 119053.

D. Grujicic, B. Pesic, Electrochimica Acta 50(22) (2005) 4426-4443.

D. Grujicic, B. Pesic, Electrochimica Acta 47(18) (2002) 2901-2912.

J. Vazquez-Arenas, G. Vázquez, A.M. Meléndez, I. González, Journal of The Electrochemical Society 154(9) (2007) D473.

O. Ghodbane, L. Roué, D. Bélanger, Electrochimica Acta 52(12) (2007) 5843-5855.

S. Fletcher, C.S. Halliday, D. Gates, M. Westcott, T. Lwin, G. Nelson, Journal of Electroanalytical Chemistry 159(2) (1983) 267-285.

V.A. Isaev, O. V. Grishenkova, Y.P. Zaykov, Journal of Solid State Electrochemistry 22 (2018) 2775-2778.

N. Zurita, S.G. García, Avances en Ciencias e Ingeneria 11 (2020) Art. 3.

A. Milchev, T. Zapryanova, Electrochimica Acta 51(14) (2006) 2926-2933.

T. Zapryanova, A. Hrussanova, A. Milchev, Journal of Electroanalytical Chemistry 600(2) (2007) 311-317.

G. Gunawardena, G. Hills, I. Montenegro, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 184(2) (1985) 357-369.

G.A. Hope, R. Woods, Journal of the Electrochemical Society 151(9) (2004) C550.

B. Scharifker, D. Hills, Electrochimica Acta 28(7) (1982) 879-889.

L. Huang, E.-S. Lee, K.-B. Kim, Colloids and Surfaces A: Physicochemical and Engineering Aspects 262(1-3) (2005) 125–131.

A.J. Wain, Electrochimica Acta 92 (2013) 383-391.

A. Salehi-Khojin, H.-R.M. Jhong, B.A. Rosen, W. Zhu, S. Ma, P.J.A. Kenis, R.I. Masel, Journal of Physical Chemistry C 117(4) (2013) 1627-1632.

Electrochemical Science