Graphene based sulfonated polyvinyl alcohol hydrogel nanocomposite for flexible supercapacitors

  • Subhakaran Singh Rajaputra Centre for Advanced Energy Studies, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur Dist. 522 502, AP, India and Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur Dist. 522 502, AP, India https://orcid.org/0000-0003-1049-2275
  • Nagalakshmi Pennada Centre for Advanced Energy Studies, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur Dist. 522 502, AP, India and Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur Dist. 522 502, AP, India https://orcid.org/0000-0002-6712-4337
  • Anjaneyulu Yerramilli Centre for Advanced Energy Studies, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur Dist. 522 502, AP, India and Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur Dist. 522 502, AP, India
  • Naga Mahesh Kummara Centre for Advanced Energy Studies, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur Dist. 522 502, AP, India https://orcid.org/0000-0003-4083-9452
Keywords: Electrochemical double-layer capacitors, gel polymer electrolyte, carbon cloth, cyclic voltammetry, electrochemical impedance, specific capacitance, specific energy
Graphical Abstract

Abstract

Graphene based sulfonated polyvinyl alcohol (PVA) hydrogel was synthesized and its performance as nanocomposite gel polymer electrolyte was investigated for application in quasi solid-state flexible supercapacitors. Hydrothermally reduced graphene (HRG) was synthesized through hydrothermal reduction of graphene oxide (GO). Sulfonated PVA hydrogel (SPVA) was synthesized with predetermined quantities of HRG to obtain nanocomposite gel polymer electrolytes coded as SPVA-HRG-x (x = content (wt.%) of HRG). The amorphous nature of SPVA-HRG-x was determined using X-ray diffraction (XRD) technique. The electrochemical performance of SPVA-HRG-x was evaluated using techniques like cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical spectroscopy (EIS) studies of a lab scale supercapacitor cell, fabricated using hydrothermally reduced carbon cloth (CCHy) current collectors coated with HRG (HRG-CCHy). In SPVA-HRG-0.5 electrolyte, HRG-CCHy exhibited specific capacitance of 200 F g-1 at 1 A g-1 and specific energy of 6.1 Wh kg-1 at specific power of 1 kW kg-1 and retained 93 % of its initial capacitance even after 5000 GCD cycles. The incorporation of SPVA with 0.5 wt.% of HRG-CCHy can be attributed to the increase in amorphous nature of SPVA-HRG-0.5, which in-turn lowers its impedance. This contributed to the remarkable supercapacitive behaviour of HRG-CCHy, demonstrating its potential as gel polymer electrolyte (GPE) for application in quasi solid-state flexible supercapacitors.

Downloads

Download data is not yet available.

References

J. Liang, B. Tian, S. Li, C. Jiang, W. Wu, Advanced Energy Materials 10 (2020) 2000022. https://doi.org/10.1002/aenm.202000022

J. Liu, J. Ye, F. Pan, X. Wang, Y. Zhu, Science China Materials 62 (2019) 545-554. https://doi.org/10.1007/s40843-018-9309-x

J. Ben, Z. Song, X. Liu, W. Lu, X. Liu, Nanoscale Research Letters 15 (2020) 151. https://doi.org/10.1186/s11671-020-03379-w

A. K. Yedluri, S. Sambasivam, S. A. Hira, K. Zeb, W. Uddin, T. N. V. Krishna, K. D. Kumar, I. M. Obaidat, H. J. Kim, Electrochimica Acta 364 (2020) 137318. https://doi.org/10.1016/j.electacta.2020.137318

M. Sandhiya, S. Suresh Balaji, M. Sethish, Energy & Fuels 34(9) (2020) 11536-11546. https://doi.org/10.1021/acs.energyfuels.0c02199

B. Cai, C. Shao, L. Qu, Y. Meng, L. Jin, Frontiers of Materials Science 13 (2019) 145-153. https://doi.org/10.1007/s11706-019-0455-2

A..K. Yedluri, S. Singh, P..J..S. Rana, K..D. Kumar, H.-J. Kim, New Journal of Chemistry 44 (2020) 4266-4275. https://doi.org/10.1039/C9NJ06318H

A. K. Yedluri, K. D. Kumar, H.-J. Kim, Dalton Transactions 49 (2020) 3622-3629. https://doi.org/10.1039/D0DT00268B

A. K. Yedluri, K. D. Kumar, H.-J. Kim, Dalton Transactions 49 (2020) 4050-4059 https://doi.org/10.1039/D0DT00191K

A. K. Yedluri, D. K. Kulurumotlakatla, S. Sangaraju, I. M. Obaidat, H.-J. Kim, Journal of Energy Storage 31 (2020) 101623. https://doi.org/10.1016/j.est.2020.101623

A. K. Yedluri, K. D. Kumar, H.-J. Kim, Electrochimica Acta 330 (2020) 135261. https://doi.org/10.1016/j.electacta.2019.135261

G. Zhang, Y. Chen, Y. Chen, H. Guo, Materials Research Bulletin 102 (2018) 391-398. https://doi.org/10.1016/j.materresbull.2018.03.006

D. Wang, L. Xu, Y. Wang, W. Xu, Journal of Electroanalytical Chemistry 815 (2018) 166-174. https://doi.org/10.1016/j.jelechem.2018.03.016

X. Chen, R. Paul, L. Dai, National Science Review 4 (2017) 453-489. https://doi.org/10.1093/nsr/nwx009

D. P. Dubal, N. R. Chodankar, D.-H. Kim, P. R. Gomez, Chemical Society Reviews 47 (2018) 2065-2129. https://doi.org/10.1039/C7CS00505A

S. Alipoori, S. Mazinani, S. H. Aboutalebi, F. Sharif, Journal of Energy Storage 27 (2020) 101072. https://doi.org/10.1016/j.est.2019.101072

Y. Wang, Z. Chang, M. Qian, Z. Zhang, J. Lin, F. Huang, Carbon 143 (2019) 300-308. https://doi.org/10.1016/j.carbon.2018.11.033

X. Lu, M. Yu, G. Wang, Y. Tong, Y. Li, Energy & Environmental Science 7 (2014) 2160-2181. https://doi.org/10.1039/C4EE00960F

Y.-G. Cho, C. Hwang, D. S. Cheong, Y.-S. Kim, H.-K. Song, Advanced Materials 31 (2019) 1804909. https://doi.org/10.1002/adma.201804909

M. Rosi, F. Iskandar, M. Abdullah, Khairurrijal, International Journal of Electrochemical Science 9 (2014) 4251-4256. https://1library.net/document/oy875xwz-hydrogel-polymer-electrolytes-polyvinyl-alcohol-hydroxyethylcellulose-supercapacitor-applications.html

Q.-M. Tu, L.-Q. Fan, F. Pan, J.-L. Huang, Y. Gu, J.-M. Lin, M.-L. Huang, Y.-F. Huang, J.-H. Wu, Electrochimica Acta 268 (2018) 562-568. https://doi.org/10.1016/j.electacta.2018.02.008

A. A. Łatoszyńska, P.-L. Taberna, P. Simon, W. Wieczorek, Electrochimica Acta 242 (2017) 31-37. https://doi.org/10.1016/j.electacta.2017.04.122

B. Karaman, A. Bozkurt, International Journal of Hydrogen Energy 43 (2018) 6229-6237. https://doi.org/10.1016/J.IJHYDENE.2018.02.032

M. Areir, Y. Xu, D. Harrison, J. Fyson, R. Zhang, Materials and Manufacturing Processes 33 (2018) 905-911. https://doi.org/10.1080/10426914.2017.1401712

K. Prasannan, R. Natarajan, S.D. Kaveripatnam, ChemPhysChem 14(16) (2013) 3822-3826. https://doi.org/10.1002/cphc.201300622

R. Singh, C. C. Tripathi, Materials Today: Proceedings 5 (2018) 1125-1130. https://doi.org/10.1016/j.matpr.2017.11.192

J. Ye, H. Tan, S. Wu, K. Ni, F. Pan, J. Liu, Z. Tao, Y. Qu, H. Ji, P. Simon, Y. Zhu, Advanced Materials 30 (2018) 1801384. https://doi.org/10.1002/adma.201801384

Y. L. Li, P. C. Li, B. J. Li, M. K. Gao, F. Y. Zhao, L. Shao, J. F. Chen, L. H. Li, International Journal of Electrochemical Science 12 (2017) 10567-10576. https://doi.org/10.20964/2017.11.32

D. Ghosh, S.O. Kim, Electronic Materials Letters 11 (2015) 719-734. https://doi.org/10.1007/s13391-015-9999-1

M. Jiang, J. Zhu, C. Chen, Y. Lu, Y. Ge, X. Zhang, ACS Applied Materials & Interfaces 8 (2016) 3473-3481. https://doi.org/10.1021/acsami.5b11984

K. Sun, M. Dong, E. Feng, H. Peng, G. Ma, G. Zhao, Z. Lei, RSC Advances 5 (2015) 22419-22425. https://doi.org/10.1039/C4RA15484C

R. Xu, F. Guo, X. Cui, L. Zhang, K. Wang, J. Wei, Journal of Materials Chemistry A 3 (2015) 22353-22360. https://doi.org/10.1039/C5TA06165B

K. Sun, F. Ran, G. Zhao, Y. Zhu, Y. Zheng, M. Ma, X. Zheng, G. Ma, Z. Lei, RSC Advances 6 (2016) 55225-55232. https://doi.org/10.1039/C6RA06797B

G. Ma, M. Dong, K. Sun, E. Feng, H. Peng, Z. Lei, Journal of Materials Chemistry A 3 (2015) 4035-4041. https://doi.org/10.1039/C4TA06322H

H. Gao, K. Lian, Journal of The Electrochemical Society 160 (2013) A505. https://doi.org/10.1149/2.053303jes/meta

C.-S. Lim, K.H. Teoh, C.-W. Liew, S. Ramesh, Materials Chemistry and Physics 143(2) (2014) 661-667. https://doi.org/10.1016/j.matchemphys.2013.09.051

C.-S. Lim, K. H. Teoh, C.-W. Liew, S. Ramesh, Ionics 20 (2014) 251-258. https://doi.org/10.1007/s11581-013-0982-2

Y. F. Huang, P. F. Wu, M. Q. Zhang, W. H. Ruan, E. P. Giannelis, Electrochimica Acta 132 (2014) 103-111. https://doi.org/10.1016/j.electacta.2014.03.151

Y. S. Ye, M. Y. Cheng, X. L. Xie, J. Rick, Y. J. Huang, F. C. Chang, B. J. Hwang, Journal of Power Sources 239 (2013) 424-432. https://doi.org/10.1016/j.jpowsour.2013.03.021

J. Gun, S. A. Kulkarni, W. Xiu, S. K. Batabyal, S. Sladkevich, P. V. Prikhodchenko, V. Gutkin, O. Lev, Electrochemistry Communications 19 (2012) 108-110. https://doi.org/10.1016/j.elecom.2012.03.025

Y. C. Cao, C. Xu, X. Wu, X. Wang, L. Xing, K. Scott, Journal of Power Sources 196 (2011) 8377-838. https://doi.org/10.1016/j.jpowsour.2011.06.074

X. Yang, F. Zhang, L. Zhang, T. Zhang, Y. Huang, Y. Chen, Advanced Functional Materials 23 (2013) 3353-3360. https://doi.org/10.1002/adfm.201203556

S. S. Rajaputra, N. Pennada, A. Yerramilli, N. M. Kummara, Ionics (2021) https://doi.org/10.1007/s11581-021-04144-4

S. S. Rajaputra, N. Pennada, A. Yerramilli, N. M. Kummara, Journal of Electrochemical Energy Conversion and Storage 18(4) (2021) 041008. https://doi.org/10.1115/1.4051143

H. Wang, H. Yi, X. Chen, X. Wang, Journal of Materials Chemistry A 2 (2014) 3223-3230. https://doi.org/10.1039/C3TA15046A

A. Hany, M. A. Mousa, T. El-Essawy, Journal of Basic and Environmental Sciences 4 (2017) 298-304. https://jbesci.org/published/4.4.2.pdf

E. Sheha, M. K. El-Mansy, Journal of Power Sources 185 (2008) 1509-1513. https://doi.org/10.1016/j.jpowsour.2008.09.046

Y. Pavani, M. Ravi, S. Bhavani, A. K. Sharma, V. V. Narasimha Rao, Polymer Engineering & Science 52 (2012) 1685-1692. https://doi.org/10.1002/pen.23118

R. M. Hodge, G. H. Edward, G. P. Simon, Polymer 37 (1996) 1371-1376. https://doi.org/10.1016/0032-3861(96)81134-7

K. Ghosh, C. Y. Yue, Electrochimica Acta 276 (2018) 47-63. https://doi.org/10.1016/j.electacta.2018.04.162

M. P. Kumar, T. Kesavan, G. Kalita, P. Ragupathy, T. N. Narayanan, D. K. Pattanayak, RSC advances 4 (2014) 38689-38697. https://doi.org/10.1039/C4RA04927F

X. Lu, Y. Zeng, M. Yu, T. Zhai, C. Liang, S. Xie, M. S. Balogun, Y. Tong, Advanced Materials 26 (2014) 3148-315.5 https://doi.org/10.1002/adma.201305851

J. Cao, C. Chen, K. Chen, Q. Lu, Q. Wang, P. Zhou, D. Liu, L. Song, Z. Niu, J. Chen, Journal of Materials Chemistry A 5 (2017) 15008-15016. https://doi.org/10.1039/C7TA04920J

N. Deka, J. Deka, G. K. Dutta, Chemistry Select 3 (2018) 8483-8490. https://doi.org/10.1002/slct.201801507

S. P. S. Moopri, G. K. Veerasubramani, R. M. Bhattarai, G. Gnanasekaran, S. J. Kim, Y. S. Mok, ACS Applied Energy Materials 4 (2021) 2218-2230. https://doi.org/10.1021/acsaem.0c02739

H. Yu, J. Wu, L. Fan, K. Xu, X. Zhong, Y. Lin, J. Lin, Electrochimica Acta 56 (2011) 6881-6886. https://doi.org/10.1016/j.electacta.2011.06.039

Q. Chen, X. Li, X. Zang, Y. Cao, Y. He, P. Li, K. Wang, J. Wei, D. Wu, H. Zhu, RSC Advances 4 (2014) 36253-36256. https://doi.org/10.1039/C4RA05553E

G. Radić, I. Šajnović, Ž. Petrović, M. Kraljić Roković, Croatica Chemica Acta 91(4) (2018) 481-490. https://doi.org/10.5562/cca3452

S. T. Senthilkumar, R. K. Selvan, N. Ponpandian, J. S. Melo, Y. S. Lee, Journal of Materials Chemistry A 1 (2013) 7913-7919 https://doi.org/10.1039/C3TA10998D

X. Liu, C. Men, X. Zhang, Q. Li, Liu, Small 12 (2016) 4973-4979 https://doi.org/10.1002/smll.201600841

Published
03-08-2021
Section
Electrochemical Science