Molecular interaction of natural dye based on Zea mays and Bixa orellana with nanocrystalline TiO2 in dye sensitized solar cells

  • Arnold Anthony Huamán Aguirre Universidad Nacional de Ingeniería, Av. Tupac Amaru 210, Rímac 15333, Lima, Perú and Universidad Tecnológica del Perú, Av. Arequipa 265, Cercado de Lima 15046, Lima, Perú https://orcid.org/0000-0002-7994-8069
  • Karim Salazar Salinas Universidad Nacional Agraria La Molina, Av. La Molina s/n, La molina 15024, Lima, Perú https://orcid.org/0000-0003-0102-9000
  • María Quintana Cáceda Universidad Nacional de Ingeniería, Av. Tupac Amaru 210, Rímac 15333, Lima, Perú https://orcid.org/0000-0002-2677-6179
Keywords: molecular dynamic simulation, nanostructured titanium dioxide, plant colorants, plant colorants; sensitizer chemisorption
Graphical Abstract

Abstract

This work studies the interaction between natural dyes obtained from Peruvian Zea mays and Bixa orellana seeds and nanostructured titanium dioxide, in order to evaluate their function as sensitizers into solar cell devices. The effective attachment of dyes to the TiO2 layer is corroborated by the comparison of UV-Visible absorption and FT-IR spectra of the extracted dye solutions and sensitized TiO2 electrodes. The principal compounds from the seed extraction of Zea mays and Bixa orellana are cyanidin-3-glucoside (C3G) and bixin respectively, which were analyzed in an isolated dye/cluster TiO2 system by molecular dynamic simulation. The results showed that chemisorption is carried out through a consecutive deprotonation process, and Ti-O bond formation by the monodentate OH and COOH anchoring groups, for C3G and bixin respectively. Finally, we tested the effect of the dye – TiO2 interaction on the charge transfer by the comparison of the current-voltage  curves and incident photon-to-current conversion efficiency (IPCE) of the cells. We found that dye agglomeration in films with Bixa orellana and high charge recombination of films with Zea mays are critical points to be solved. For this reason, we propose the pretreatment of the TiO2 film before sensitization with Bixa orellana and analyze the effects of pH in Zea mays solution, in order to obtain better device efficiencies.

Downloads

Download data is not yet available.

References

M. Grätzel, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 4(2) (2003) 145-153. https://doi.org/10.1016/S1389-5567(03)00026-1

S. Aghazada, P. Gao, A. Yella, G. Marotta, T. Moehl, J. Teuscher, J. E. Moser, F. De Angelis, M. Grätzel, M. K. Nazeeruddin, Inorganic Chemistry 55(13) (2016) 6653-6659. https://doi.org/10.1021/acs.inorgchem.6b00842

M. Ye, X. Wen, M. Wang, J. Iocozzia, N. Zhang, C. Lin, Z. Lin, Materials Today 18(3) (2015) 155-162. https://doi.org/10.1016/j.mattod.2014.09.001

T. S. Senthil, N. Muthukumarasamy, D. Velauthapillai, S. Agilan, M. Thambidurai, R. Balasundaraprabhu, Renewable Energy 36(9) (2011) 2484-2488. https://doi.org/10.1016/j.renene.2011.01.031

K. Galappaththi, A. Lim, P. Ekanayake, M. I. Petra, International Journal of Photoenergy (2017). https://doi.org/10.1155/2017/8564293

K. Wongcharee, V. Meeyoo, S. Chavadej, Solar Energy Materials and Solar Cells 91(7) (2007) 566-571. https://doi.org/10.1016/j.solmat.2006.11.005

S. A. Mozaffari, M. Saeidi, R. Rahmanian, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 142 (2015) 226-231. https://doi.org/10.1016/j.saa.2015.02.003

S. Dayang, M. Irwanto, N. Gomesh, Indonesian Journal of Electrical Engineering and Computer Science 9(1) (2018) 191-197. https://doi.org/10.11591/ijeecs.v9.i1.pp191-197

P. Chaiamornnugool, S. Tontapha, R. Phatchana, N. Ratchapolthavisin, S. Kanokmedhakul, W. Sang-aroon, V. Amornkitbamrung, Journal of Molecular Structure 1127(5) (2017) 145-155. https://doi.org/10.1016/j.molstruc.2016.07.086

D. Eli, M. Yusuf Onimisi, S. Garba Abdu, E. Jonathan, M. Y. Onimisi, S. G. Abdu, S. O. Yakubu, J. Miguel Dias, British Journal of Applied Science & Technology 15(2) (2016) 1-6. https://doi.org/10.9734/BJAST/2016/24437

Y. Kimura, T. Maeda, S. Iuchi, N. Koga, Y. Murata, A. Wakamiya, K. Yoshida, Journal of Photochemistry and Photobiology A: Chemistry 335 (2017) 230-238. https://doi.org/10.1016/j.jphotochem.2016.12.005

N. Prabavathy, S. Shalini, R. Balasundaraprabhu, D. Velauthapillai, S. Prasanna, P. Walke, N. Muthukumarasamy, Journal of Materials Science: Materials in Electronics 28 (2017) 9882-9892. https://doi.org/10.1007/s10854-017-6743-7

A. S. Najm, A. B. Mohamad, N.A. Ludin, AIP Conference Proceeding 1838 (2017).

https://doi.org/10.1063/1.4982191

M. A. M. Al-Alwani, A. B. Mohamad, A. A. H. Kadhum, N. A. Ludin, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 138 (2015) 130-137. https://doi.org/10.1016/j.saa.2014.11.018

K. U. Isah, U. Ahmadu, A. Idris, M. I. Kimpa, U. E. Uno, M. M. Ndamitso, N. Alu, Materials for Renewable and Sustainable Energy 4 (2015) 39. https://doi.org/10.1007/s40243-014-0039-0

C. I. Oprea, A. Dumbrava, I. Enache, A. Georgescu, M. A. Gîrţu, Journal of Photochemistry and Photobiology A: Chemistry 240 (2012) 5-13. https://doi.org/10.1016/j.jphotochem.2012.05.003

A. R. Pai, B. Nair, Bulletin of Materials Science 38 (2015) 1129-1133. https://doi.org/10.1007/s12034-015-0991-z

R. Syafinar, N. Gomesh, M. Irwanto, M. Fareq, Y. M. Irwan, Energy Procedia 79 (2015) 896-902. https://doi.org/10.1016/j.egypro.2015.11.584

M. A. M. Al-Alwani, A. B. Mohamad, A. Amir, H. Kadhum, N. A. Ludin, Asian Journal of Chemistry 26(18) (2014) 6285-6288. https://doi.org/10.14233/ajchem.2014.17742

S. Z. Siddick, C. W. Lai, J. C. Juan, Materials Science in Semiconductor Processing 74 (2018) 267-276. https://doi.org/10.1016/j.mssp.2017.10.046

M. Rossi, F. Matteocci, A. Di Carlo, C. Forni, Journal of Plant Science and Phytopathology 1 (2017) 087-094. https://doi.org/10.29328/journal.jpsp.1001011

E. Yamazaki, M. Murayama, N. Nishikawa, N. Hashimoto, M. Shoyama, O. Kurita, Solar Energy 81(4) (2007) 512-516. https://doi.org/10.1016/j.solener.2006.08.003

K. V Hemalatha, S. N. Karthick, C. J. Raj, N. Hong, S. Kim, H. Kim, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 96 (2012) 305-309. https://doi.org/10.1016/j.saa.2012.05.027

H. Hug, M. Bader, P. Mair, T. Glatzel, Applied Energy 115 (2014) 216-225. https://doi.org/10.1016/j.apenergy.2013.10.055

S. De Pascual-Teresa, C. Santos-Buelga, J. C. Rivas-Gonzalo, Journal of the Science of Food and Agriculture 82 (2002) 1003-1006. https://doi.org/10.1002/jsfa.1143

P. Sahni, Advanced Science Letters 5(1) (2012) 1-10. https://doi.org/10.1166/asl.2012.1961

A. K. Pandey, M. S. Ahmad, N. A. Rahim, V. V. Tyagi, R. Saidur, Environmental Biotechnology: For Sustainable Future (2019) 375-401. https://doi.org/10.1007/978-981-10-7284-0_15

R. E. Wrolstad, R. W. Durst, J. Lee, Trends in Food Science & Technology 16(9) (2005) 423 428. https://doi.org/https://doi.org/10.1016/j.tifs.2005.03.019

T. Taham, F. A. Cabral, M. A. S. Barrozo, The Journal of Supercritcal Fluids 100 (2015) 175 183. https://doi.org/https://doi.org/10.1016/j.supflu.2015.02.006

N. T. R. N. Kumara, P. Ekanayake, A. Lim, L. Y. C. Liew, M. Iskandar, L. C. Ming, G. K. R. Senadeera, Journal of Alloys and Compounds 581 (2013) 186-191. https://doi.org/10.1016/j.jallcom.2013.07.039

Y. Han, D. Jiang, J. Zhang, W. Li, Z. Gan, J. Gu, Frontiers of Chemical Science and Engineering 10 (2016) 16-38. https://doi.org/10.1007/s11705-015-1545-z

E. Güzel, B. S. Arslan, V. Durmaz, M. Cesur, Ö. F. Tutar, T. Sarı, M. İşleyen, M. Nebioğlu, İ. Şişman, Solar Energy 173 (2018) 34-41. https://doi.org/10.1016/j.solener.2018.07.048

Y. Ooyama, M. Kanda, T. EnoKi, Y. Adachi, J. Ohshita, RSC Advances 7(22) (2017) 13072-13081. https://doi.org/10.1039/C7RA00799J

L. Daniliuc, C. De Kesel, C. David, European Polymer Journal 28(11) (1992) 1365-1371.

https://doi.org/10.1016/0014-3057(92)90277-9

A. H. Ahliha, F. Nurosyid, A. Supriyanto, T. Kusumaningsih, IOP Conference Series: Materials Science and Engineering 333 (2018) 12018. https://doi.org/10.1088/1757-899x/333/1/012018

T. Lóránd, P. Molnár, J. Deli, G. Tóth, Journal of Biochemical and Biophysical Methods 55(1-3) (2002) 251-258. https://doi.org/10.1016/S0165-022X(02)00113-6

Y. Ooyama, S. Inoue, T. Nagano, K. Kushimoto, J. Ohshita, I. Imae, K. Komaguchi, Y. Harima, Angewandte Chemie International Edition 50 (2011) 7429-7433. https://doi.org/10.1002/anie.201102552

C. Bonechi, S. Martini, A. Magnani, C. Rossi, Magnetic Resonance in Chemistry 46(7) (2008) 625-629. https://doi.org/https://doi.org/10.1002/mrc.2217

Q. Dai, J. Rabani, Journal of Photochemistry and Photobiology A: Chemistry 148(1-3) (2002) 17-24. https://doi.org/10.1016/S1010-6030(02)00073-4

S. Hao, J. Wu, Y. Huang, J. Lin, Solar Energy 80(2) (2006) 209-214. https://doi.org/10.1016/j.solener.2005.05.009

G. Calogero, G. Di Marco, Solar Energy Materials and Solar Cells 92(11) (2008) 1341-1346.

https://doi.org/10.1016/j.solmat.2008.05.007

K. Vinodgopal, X. Hua, R. L. Dahlgren, A. G. Lappin, L. K. Patterson, P. V. Kamat, The Journal of Physical Chemistry 99(27) (1995) 10883-10889. https://doi.org/10.1021/j100027a032

M. A. Montenegro, A. D. O. Rios, A. Z. Mercadante, M. A. Nazareno, C. D. Borsarelli, Journal of Agricultural and Food Chemistry 52(2) (2004) 367-373. https://doi.org/10.1021/jf0349026

T. Ma, K. Inoue, H. Noma, K. Yao, E. Abe, Journal of Photochemistry and Photobiology A: Chemistry 152(1-3) (2002) 207-202. https://doi.org/10.1016/S1010-6030(02)00025-4

A. Ehret, L. Stuhl, M. T. Spitler, Electrochimica Acta 45(28) (2000) 4553-4557. https://doi.org/10.1016/S0013-4686(00)00606-X

L. Zhang, J. M. Cole, ACS Applied Materials & Interfaces 7(6) (2015) 3427-3455.

https://doi.org/10.1021/am507334m

P. G. Bomben, K. D. Thériault, C. P. Berlinguette, European Journal of Inorganic Chemistry 2011(11) (2011) 1806-1814. https://doi.org/10.1002/ejic.201001345

E. Marcano, Energy Harvesting and Systems 5(1-2) (2018) 29-38. https://doi.org/10.1515/ehs-2018-0008

S. Tay-Agbozo, S. Street, L. D. Kispert, Journal of Photochemistry and Photobioly A: Chemistry 362 (2018) 31-39. https://doi.org/10.1016/j.jphotochem.2018.05.008

X. Chen, L. Liu, P. Y. Yu, S. S. Mao, Science 331(6018) (2011) 746-750. https://doi.org/10.1126/science.1200448

H. Ozawa, M. Awa, T. Ono, H. Arakawa, Chemistry - An Asian Journal 7(1) (2012) 156-162.

https://doi.org/10.1002/asia.201100484

A. A. Huamán, M. R. Celestino, M. E. Quintana, RSC Advances 11 (2021) 9086-9097.

https://doi.org/10.1039/D1RA01043C

F. Cao, G. Oskam, G. J. Meyer, P. C. Searson, The Journal of Physical Chemistry 100(42) (2002) 17021-17027. https://doi.org/10.1021/jp9616573

C. Y. Chien, B. D. Hsu, Solar Energy 98(C) (2013) 203-211. https://doi.org/10.1016/j.solener.2013.09.035

A. El-Zohry, A. Orthaber, B. Zietz, The Journal of Physical Chemistry C 116(50) (2012) 26144-26153. https://doi.org/10.1021/jp306636w

S. Agrawal, T. Leijtens, E. Ronca, M. Pastore, H. Snaith, F. De Angelis, Journal of Materials Chemistry A 1(46) (2013) 14675-14685. https://doi.org/10.1039/C3TA12917A

G. Marotta, M. G. Lobello, C. Anselmi, G. Barozzino Consiglio, M. Calamante, A. Mordini, M. Pastore, F. De Angelis, ChemPhysChem 15(6) (2014) 1116-1125. https://doi.org/10.1002/cphc.201300923

L. Zhang, X. Liu, W. Rao, J. Li, Scientific Reports 6 (2016) 35893. https://doi.org/10.1038/srep35893

Published
25-07-2021
Section
Electrochemical Science